摘要: 主成分分析的主要目的是希望用较少的变量去解释原来资料中的大部分变异,将我们手中许多相关性很高的变量转化成彼此相互独立或不相关的变量,从而达到降维的目的。在原始数据“预处理”阶段通常要先对它们采用PCA的方法进行降维。本质上讲,PCA就是将高维的数据通过线性变换投影到低维空间上去,但并非随意投影,而是需要遵循一个规则:希望降维后的数据不能失真,也就是说被PCA降掉的那些维度只能是噪声或是冗余的数据。 噪声可以理解为样本数据各维度之间的相关性干扰,冗余可以理解为没有的维度(何为没用?我们PCA处理的基础是保持数据的可区分性,如果该维度上样本数据变异度很小,那么留它何用~~)。 以上是PCA的本质. 阅读全文
posted @ 2013-07-26 19:52 uumonkey 阅读(3267) 评论(0) 推荐(1) 编辑