摘要: 基础概念 超参数是在开始学习过程之前设置值的参数,而不是通过训练得到的参数数据。通常情况下,在机器学习过程中需要对超参数进行优化,给学习器选择一组最优超参数,以提高学习的性能和效果。比如,树的数量或树的深度,学习率(多种模式)以及k均值聚类中的簇数等都是超参数。 与超参数区别的概念是参数,它是模型训 阅读全文
posted @ 2018-07-17 22:33 molearner 阅读(18461) 评论(0) 推荐(3) 编辑