数据仓库(四)——数据仓库系统
第一章 数仓搭建-ODS层
1)保持数据原貌不做任何修改,起到备份数据的作用。
2)数据采用LZO压缩,减少磁盘存储空间。100G数据可以压缩到10G以内。
3)创建分区表,防止后续的全表扫描,在企业开发中大量使用分区表。
4)创建外部表。在企业开发中,除了自己用的临时表,创建内部表外,绝大多数场景都是创建外部表。外部表只创建表与原始数据之间的映射关系,而不改变数据的位置,在对表执行删除操作时,只会删除表的元数据,而不会删除表的数据。相对来说更安全,这种方式在实际工作环境中应用十分广泛。
1.1 用户行为数据
1.1.1 创建日志表ods_log
1)创建支持LZO压缩的分区表
(1)建表语句
输入数据是LZO压缩格式、输出数据是TEXT存储格式、支持JSON解析的分区启动日志表
hive (gmall)>
drop table if exists ods_log;
CREATE EXTERNAL TABLE ods_log (`line` string)
PARTITIONED BY (`dt` string) -- 按照时间创建分区
STORED AS -- 指定存储方式,读数据采用LzoTextInputFormat;
INPUTFORMAT 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/warehouse/gmall/ods/ods_log' -- 指定数据在hdfs上的存储位置
;
说明Hive的LZO压缩:https://cwiki.apache.org/confluence/display/Hive/LanguageManual+LZO
(2)分区规划
2)加载数据,指定每天数据的分区信息为具体到日的日期
hive (gmall)>
load data inpath '/origin_data/gmall/log/topic_log/2020-06-14' into table ods_log partition(dt='2020-06-14');
注意:时间格式都配置成YYYY-MM-DD格式,这是Hive默认支持的时间格式
3)为LZO压缩文件创建索引
文件输入格式为LZO压缩格式,由于LZO压缩格式的文件不支持HDFS对其进行分片,因此需要对LZO压缩格式的文件创建索引。
[atguigu@hadoop102 bin]$ hadoop jar /opt/module/hadoop-3.1.3/share/hadoop/common/hadoop-lzo-0.4.20.jar com.hadoop.compression.lzo.DistributedLzoIndexer /warehouse/gmall/ods/ods_log/dt=2020-06-14
1.1.2 Shell中单引号和双引号区别
1)在/home/atguigu/bin创建一个test.sh文件
[atguigu@hadoop102 bin]$ vim test.sh
在文件中添加如下内容
#!/bin/bash
do_date=$1
echo '$do_date'
echo "$do_date"
echo "'$do_date'"
echo '"$do_date"'
echo `date`
2)查看执行结果
[atguigu@hadoop102 bin]$ test.sh 2020-06-14
$do_date
2020-06-14
'2020-06-14'
"$do_date"
2020年 06月 18日 星期四 21:02:08 CST
3)总结:
(1)单引号不取变量值
(2)双引号取变量值
(3)双引号内部嵌套单引号,取出变量值
(4)单引号内部嵌套双引号,不取出变量值
(5)反引号`,执行引号中命令
1.1.3 ODS层日志表加载数据脚本
1)编写脚本
(1)在hadoop102的/home/atguigu/bin目录下创建脚本
[atguigu@hadoop102 bin]$ vim hdfs_to_ods_log.sh
在脚本中编写如下内容
#!/bin/bash
# 定义变量方便修改
APP=gmall
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$1" ] ;then
do_date=$1
else
do_date=`date -d "-1 day" +%F`
fi
echo "================== 日志日期为 $do_date =================="
sql="
load data inpath '/origin_data/$APP/log/topic_log/$do_date' into table ${APP}.ods_log partition(dt='$do_date');
"
hive -e "$sql"
hadoop jar /opt/module/hadoop-3.1.3/share/hadoop/common/hadoop-lzo-0.4.20.jar com.hadoop.compression.lzo.DistributedLzoIndexer /warehouse/$APP/ods/ods_log/dt=$do_date
(1)说明1:
[ -n 变量值 ] 判断变量的值,是否为空
-
变量的值,非空,返回true
-
变量的值,为空,返回false
注意:[ -n 变量值 ]不会解析数据,使用[ -n 变量值 ]时,需要对变量加上双引号(" ")
(2)说明2:
查看date命令的使用,date --help
(3)增加脚本执行权限
[atguigu@hadoop102 bin]$ chmod 777 hdfs_to_ods_log.sh
2)脚本使用
(1)执行脚本
[atguigu@hadoop102 module]$ hdfs_to_ods_log.sh 2020-06-14
(2)查看导入数据
1.2 业务数据
业务数据的ODS层搭建与用户行为数据的ODS层搭建相同,都是保留原始数据,不对数据进行任何转换处理,根据需求分析选取业务数据库中的表的必须字段进行建表,然后将Sqoop导入的原始数据加载(Load)至所建表格中。
ODS层业务表分区规划如下
ODS层业务表数据装载思路如下
1.2.1 活动信息表
DROP TABLE IF EXISTS ods_activity_info;
CREATE EXTERNAL TABLE ods_activity_info(
`id` STRING COMMENT '编号',
`activity_name` STRING COMMENT '活动名称',
`activity_type` STRING COMMENT '活动类型',
`start_time` STRING COMMENT '开始时间',
`end_time` STRING COMMENT '结束时间',
`create_time` STRING COMMENT '创建时间'
) COMMENT '活动信息表'
PARTITIONED BY (`dt` STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS
INPUTFORMAT 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/warehouse/gmall/ods/ods_activity_info/';
1.2.2 活动规则表
DROP TABLE IF EXISTS ods_activity_rule;
CREATE EXTERNAL TABLE ods_activity_rule(
`id` STRING COMMENT '编号',
`activity_id` STRING COMMENT '活动ID',
`activity_type` STRING COMMENT '活动类型',
`condition_amount` DECIMAL(16,2) COMMENT '满减金额',
`condition_num` BIGINT COMMENT '满减件数',
`benefit_amount` DECIMAL(16,2) COMMENT '优惠金额',
`benefit_discount` DECIMAL(16,2) COMMENT '优惠折扣',
`benefit_level` STRING COMMENT '优惠级别'
) COMMENT '活动规则表'
PARTITIONED BY (`dt` STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS
INPUTFORMAT 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/warehouse/gmall/ods/ods_activity_rule/';
1.2.3 一级品类表
DROP TABLE IF EXISTS ods_base_category1;
CREATE EXTERNAL TABLE ods_base_category1(
`id` STRING COMMENT 'id',
`name` STRING COMMENT '名称'
) COMMENT '商品一级分类表'
PARTITIONED BY (`dt` STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS
INPUTFORMAT 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/warehouse/gmall/ods/ods_base_category1/';
1.2.4 二级品类表
DROP TABLE IF EXISTS ods_base_category2;
CREATE EXTERNAL TABLE ods_base_category2(
`id` STRING COMMENT ' id',
`name` STRING COMMENT '名称',
`category1_id` STRING COMMENT '一级品类id'
) COMMENT '商品二级分类表'
PARTITIONED BY (`dt` STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS
INPUTFORMAT 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/warehouse/gmall/ods/ods_base_category2/';
1.2.5 三级品类表
DROP TABLE IF EXISTS ods_base_category3;
CREATE EXTERNAL TABLE ods_base_category3(
`id` STRING COMMENT ' id',
`name` STRING COMMENT '名称',
`category2_id` STRING COMMENT '二级品类id'
) COMMENT '商品三级分类表'
PARTITIONED BY (`dt` STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS
INPUTFORMAT 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/warehouse/gmall/ods/ods_base_category3/';
1.2.6 编码字典表
DROP TABLE IF EXISTS ods_base_dic;
CREATE EXTERNAL TABLE ods_base_dic(
`dic_code` STRING COMMENT '编号',
`dic_name` STRING COMMENT '编码名称',
`parent_code` STRING COMMENT '父编码',
`create_time` STRING COMMENT '创建日期',
`operate_time` STRING COMMENT '操作日期'
) COMMENT '编码字典表'
PARTITIONED BY (`dt` STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS
INPUTFORMAT 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/warehouse/gmall/ods/ods_base_dic/';
1.2.7 省份表
DROP TABLE IF EXISTS ods_base_province;
CREATE EXTERNAL TABLE ods_base_province (
`id` STRING COMMENT '编号',
`name` STRING COMMENT '省份名称',
`region_id` STRING COMMENT '地区ID',
`area_code` STRING COMMENT '地区编码',
`iso_code` STRING COMMENT 'ISO-3166编码,供可视化使用',
`iso_3166_2` STRING COMMENT 'IOS-3166-2编码,供可视化使用'
) COMMENT '省份表'
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS
INPUTFORMAT 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/warehouse/gmall/ods/ods_base_province/';
1.2.8 地区表
DROP TABLE IF EXISTS ods_base_region;
CREATE EXTERNAL TABLE ods_base_region (
`id` STRING COMMENT '编号',
`region_name` STRING COMMENT '地区名称'
) COMMENT '地区表'
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS
INPUTFORMAT 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/warehouse/gmall/ods/ods_base_region/';
1.2.9 品牌表
DROP TABLE IF EXISTS ods_base_trademark;
CREATE EXTERNAL TABLE ods_base_trademark (
`id` STRING COMMENT '编号',
`tm_name` STRING COMMENT '品牌名称'
) COMMENT '品牌表'
PARTITIONED BY (`dt` STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS
INPUTFORMAT 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/warehouse/gmall/ods/ods_base_trademark/';
1.2.10 购物车表
DROP TABLE IF EXISTS ods_cart_info;
CREATE EXTERNAL TABLE ods_cart_info(
`id` STRING COMMENT '编号',
`user_id` STRING COMMENT '用户id',
`sku_id` STRING COMMENT 'skuid',
`cart_price` DECIMAL(16,2) COMMENT '放入购物车时价格',
`sku_num` BIGINT COMMENT '数量',
`sku_name` STRING COMMENT 'sku名称 (冗余)',
`create_time` STRING COMMENT '创建时间',
`operate_time` STRING COMMENT '修改时间',
`is_ordered` STRING COMMENT '是否已经下单',
`order_time` STRING COMMENT '下单时间',
`source_type` STRING COMMENT '来源类型',
`source_id` STRING COMMENT '来源编号'
) COMMENT '加购表'
PARTITIONED BY (`dt` STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS
INPUTFORMAT 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/warehouse/gmall/ods/ods_cart_info/';
1.2.11 评论表
DROP TABLE IF EXISTS ods_comment_info;
CREATE EXTERNAL TABLE ods_comment_info(
`id` STRING COMMENT '编号',
`user_id` STRING COMMENT '用户ID',
`sku_id` STRING COMMENT '商品sku',
`spu_id` STRING COMMENT '商品spu',
`order_id` STRING COMMENT '订单ID',
`appraise` STRING COMMENT '评价',
`create_time` STRING COMMENT '评价时间'
) COMMENT '商品评论表'
PARTITIONED BY (`dt` STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS
INPUTFORMAT 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/warehouse/gmall/ods/ods_comment_info/';
1.2.12 优惠券信息表
DROP TABLE IF EXISTS ods_coupon_info;
CREATE EXTERNAL TABLE ods_coupon_info(
`id` STRING COMMENT '购物券编号',
`coupon_name` STRING COMMENT '购物券名称',
`coupon_type` STRING COMMENT '购物券类型 1 现金券 2 折扣券 3 满减券 4 满件打折券',
`condition_amount` DECIMAL(16,2) COMMENT '满额数',
`condition_num` BIGINT COMMENT '满件数',
`activity_id` STRING COMMENT '活动编号',
`benefit_amount` DECIMAL(16,2) COMMENT '减金额',
`benefit_discount` DECIMAL(16,2) COMMENT '折扣',
`create_time` STRING COMMENT '创建时间',
`range_type` STRING COMMENT '范围类型 1、商品 2、品类 3、品牌',
`limit_num` BIGINT COMMENT '最多领用次数',
`taken_count` BIGINT COMMENT '已领用次数',
`start_time` STRING COMMENT '开始领取时间',
`end_time` STRING COMMENT '结束领取时间',
`operate_time` STRING COMMENT '修改时间',
`expire_time` STRING COMMENT '过期时间'
) COMMENT '优惠券表'
PARTITIONED BY (`dt` STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS
INPUTFORMAT 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/warehouse/gmall/ods/ods_coupon_info/';
1.2.13 优惠券领用表
DROP TABLE IF EXISTS ods_coupon_use;
CREATE EXTERNAL TABLE ods_coupon_use(
`id` STRING COMMENT '编号',
`coupon_id` STRING COMMENT '优惠券ID',
`user_id` STRING COMMENT 'skuid',
`order_id` STRING COMMENT 'spuid',
`coupon_status` STRING COMMENT '优惠券状态',
`get_time` STRING COMMENT '领取时间',
`using_time` STRING COMMENT '使用时间(下单)',
`used_time` STRING COMMENT '使用时间(支付)',
`expire_time` STRING COMMENT '过期时间'
) COMMENT '优惠券领用表'
PARTITIONED BY (`dt` STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS
INPUTFORMAT 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/warehouse/gmall/ods/ods_coupon_use/';
1.2.14 收藏表
DROP TABLE IF EXISTS ods_favor_info;
CREATE EXTERNAL TABLE ods_favor_info(
`id` STRING COMMENT '编号',
`user_id` STRING COMMENT '用户id',
`sku_id` STRING COMMENT 'skuid',
`spu_id` STRING COMMENT 'spuid',
`is_cancel` STRING COMMENT '是否取消',
`create_time` STRING COMMENT '收藏时间',
`cancel_time` STRING COMMENT '取消时间'
) COMMENT '商品收藏表'
PARTITIONED BY (`dt` STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS
INPUTFORMAT 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/warehouse/gmall/ods/ods_favor_info/';
1.2.15 订单明细表
DROP TABLE IF EXISTS ods_order_detail;
CREATE EXTERNAL TABLE ods_order_detail(
`id` STRING COMMENT '编号',
`order_id` STRING COMMENT '订单号',
`sku_id` STRING COMMENT '商品id',
`sku_name` STRING COMMENT '商品名称',
`order_price` DECIMAL(16,2) COMMENT '商品价格',
`sku_num` BIGINT COMMENT '商品数量',
`create_time` STRING COMMENT '创建时间',
`source_type` STRING COMMENT '来源类型',
`source_id` STRING COMMENT '来源编号',
`split_final_amount` DECIMAL(16,2) COMMENT '分摊最终金额',
`split_activity_amount` DECIMAL(16,2) COMMENT '分摊活动优惠',
`split_coupon_amount` DECIMAL(16,2) COMMENT '分摊优惠券优惠'
) COMMENT '订单详情表'
PARTITIONED BY (`dt` STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS
INPUTFORMAT 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/warehouse/gmall/ods/ods_order_detail/';
1.2.16 订单明细活动关联表
DROP TABLE IF EXISTS ods_order_detail_activity;
CREATE EXTERNAL TABLE ods_order_detail_activity(
`id` STRING COMMENT '编号',
`order_id` STRING COMMENT '订单号',
`order_detail_id` STRING COMMENT '订单明细id',
`activity_id` STRING COMMENT '活动id',
`activity_rule_id` STRING COMMENT '活动规则id',
`sku_id` BIGINT COMMENT '商品id',
`create_time` STRING COMMENT '创建时间'
) COMMENT '订单详情活动关联表'
PARTITIONED BY (`dt` STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS
INPUTFORMAT 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/warehouse/gmall/ods/ods_order_detail_activity/';
1.2.17 订单明细优惠券关联表
DROP TABLE IF EXISTS ods_order_detail_coupon;
CREATE EXTERNAL TABLE ods_order_detail_coupon(
`id` STRING COMMENT '编号',
`order_id` STRING COMMENT '订单号',
`order_detail_id` STRING COMMENT '订单明细id',
`coupon_id` STRING COMMENT '优惠券id',
`coupon_use_id` STRING COMMENT '优惠券领用记录id',
`sku_id` STRING COMMENT '商品id',
`create_time` STRING COMMENT '创建时间'
) COMMENT '订单详情活动关联表'
PARTITIONED BY (`dt` STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS
INPUTFORMAT 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/warehouse/gmall/ods/ods_order_detail_coupon/';
1.2.18 订单表
DROP TABLE IF EXISTS ods_order_info;
CREATE EXTERNAL TABLE ods_order_info (
`id` STRING COMMENT '订单号',
`final_amount` DECIMAL(16,2) COMMENT '订单最终金额',
`order_status` STRING COMMENT '订单状态',
`user_id` STRING COMMENT '用户id',
`payment_way` STRING COMMENT '支付方式',
`delivery_address` STRING COMMENT '送货地址',
`out_trade_no` STRING COMMENT '支付流水号',
`create_time` STRING COMMENT '创建时间',
`operate_time` STRING COMMENT '操作时间',
`expire_time` STRING COMMENT '过期时间',
`tracking_no` STRING COMMENT '物流单编号',
`province_id` STRING COMMENT '省份ID',
`activity_reduce_amount` DECIMAL(16,2) COMMENT '活动减免金额',
`coupon_reduce_amount` DECIMAL(16,2) COMMENT '优惠券减免金额',
`original_amount` DECIMAL(16,2) COMMENT '订单原价金额',
`feight_fee` DECIMAL(16,2) COMMENT '运费',
`feight_fee_reduce` DECIMAL(16,2) COMMENT '运费减免'
) COMMENT '订单表'
PARTITIONED BY (`dt` STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS
INPUTFORMAT 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/warehouse/gmall/ods/ods_order_info/';
1.2.19 退单表
DROP TABLE IF EXISTS ods_order_refund_info;
CREATE EXTERNAL TABLE ods_order_refund_info(
`id` STRING COMMENT '编号',
`user_id` STRING COMMENT '用户ID',
`order_id` STRING COMMENT '订单ID',
`sku_id` STRING COMMENT '商品ID',
`refund_type` STRING COMMENT '退单类型',
`refund_num` BIGINT COMMENT '退单件数',
`refund_amount` DECIMAL(16,2) COMMENT '退单金额',
`refund_reason_type` STRING COMMENT '退单原因类型',
`refund_status` STRING COMMENT '退单状态',--退单状态应包含买家申请、卖家审核、卖家收货、退款完成等状态。此处未涉及到,故该表按增量处理
`create_time` STRING COMMENT '退单时间'
) COMMENT '退单表'
PARTITIONED BY (`dt` STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS
INPUTFORMAT 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/warehouse/gmall/ods/ods_order_refund_info/';
1.2.20 订单状态日志表
DROP TABLE IF EXISTS ods_order_status_log;
CREATE EXTERNAL TABLE ods_order_status_log (
`id` STRING COMMENT '编号',
`order_id` STRING COMMENT '订单ID',
`order_status` STRING COMMENT '订单状态',
`operate_time` STRING COMMENT '修改时间'
) COMMENT '订单状态表'
PARTITIONED BY (`dt` STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS
INPUTFORMAT 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/warehouse/gmall/ods/ods_order_status_log/';
1.2.21 支付表
DROP TABLE IF EXISTS ods_payment_info;
CREATE EXTERNAL TABLE ods_payment_info(
`id` STRING COMMENT '编号',
`out_trade_no` STRING COMMENT '对外业务编号',
`order_id` STRING COMMENT '订单编号',
`user_id` STRING COMMENT '用户编号',
`payment_type` STRING COMMENT '支付类型',
`trade_no` STRING COMMENT '交易编号',
`payment_amount` DECIMAL(16,2) COMMENT '支付金额',
`subject` STRING COMMENT '交易内容',
`payment_status` STRING COMMENT '支付状态',
`create_time` STRING COMMENT '创建时间',
`callback_time` STRING COMMENT '回调时间'
) COMMENT '支付流水表'
PARTITIONED BY (`dt` STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS
INPUTFORMAT 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/warehouse/gmall/ods/ods_payment_info/';
1.2.22 退款表
DROP TABLE IF EXISTS ods_refund_payment;
CREATE EXTERNAL TABLE ods_refund_payment(
`id` STRING COMMENT '编号',
`out_trade_no` STRING COMMENT '对外业务编号',
`order_id` STRING COMMENT '订单编号',
`sku_id` STRING COMMENT 'SKU编号',
`payment_type` STRING COMMENT '支付类型',
`trade_no` STRING COMMENT '交易编号',
`refund_amount` DECIMAL(16,2) COMMENT '支付金额',
`subject` STRING COMMENT '交易内容',
`refund_status` STRING COMMENT '支付状态',
`create_time` STRING COMMENT '创建时间',
`callback_time` STRING COMMENT '回调时间'
) COMMENT '支付流水表'
PARTITIONED BY (`dt` STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS
INPUTFORMAT 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/warehouse/gmall/ods/ods_refund_payment/';
1.2.23 商品平台属性表
DROP TABLE IF EXISTS ods_sku_attr_value;
CREATE EXTERNAL TABLE ods_sku_attr_value(
`id` STRING COMMENT '编号',
`attr_id` STRING COMMENT '平台属性ID',
`value_id` STRING COMMENT '平台属性值ID',
`sku_id` STRING COMMENT '商品ID',
`attr_name` STRING COMMENT '平台属性名称',
`value_name` STRING COMMENT '平台属性值名称'
) COMMENT 'sku平台属性表'
PARTITIONED BY (`dt` STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS
INPUTFORMAT 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/warehouse/gmall/ods/ods_sku_attr_value/';
1.2.24 商品(SKU)表
DROP TABLE IF EXISTS ods_sku_info;
CREATE EXTERNAL TABLE ods_sku_info(
`id` STRING COMMENT 'skuId',
`spu_id` STRING COMMENT 'spuid',
`price` DECIMAL(16,2) COMMENT '价格',
`sku_name` STRING COMMENT '商品名称',
`sku_desc` STRING COMMENT '商品描述',
`weight` DECIMAL(16,2) COMMENT '重量',
`tm_id` STRING COMMENT '品牌id',
`category3_id` STRING COMMENT '品类id',
`is_sale` STRING COMMENT '是否在售',
`create_time` STRING COMMENT '创建时间'
) COMMENT 'SKU商品表'
PARTITIONED BY (`dt` STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS
INPUTFORMAT 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/warehouse/gmall/ods/ods_sku_info/';
1.2.25 商品销售属性表
DROP TABLE IF EXISTS ods_sku_sale_attr_value;
CREATE EXTERNAL TABLE ods_sku_sale_attr_value(
`id` STRING COMMENT '编号',
`sku_id` STRING COMMENT 'sku_id',
`spu_id` STRING COMMENT 'spu_id',
`sale_attr_value_id` STRING COMMENT '销售属性值id',
`sale_attr_id` STRING COMMENT '销售属性id',
`sale_attr_name` STRING COMMENT '销售属性名称',
`sale_attr_value_name` STRING COMMENT '销售属性值名称'
) COMMENT 'sku销售属性名称'
PARTITIONED BY (`dt` STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS
INPUTFORMAT 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/warehouse/gmall/ods/ods_sku_sale_attr_value/';
1.2.26 商品(SPU)表
DROP TABLE IF EXISTS ods_spu_info;
CREATE EXTERNAL TABLE ods_spu_info(
`id` STRING COMMENT 'spuid',
`spu_name` STRING COMMENT 'spu名称',
`category3_id` STRING COMMENT '品类id',
`tm_id` STRING COMMENT '品牌id'
) COMMENT 'SPU商品表'
PARTITIONED BY (`dt` STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS
INPUTFORMAT 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/warehouse/gmall/ods/ods_spu_info/';
1.2.27 用户表
源自的表:
ods_user_info 用户表
DROP TABLE IF EXISTS ods_user_info;
CREATE EXTERNAL TABLE ods_user_info(
`id` STRING COMMENT '用户id',
`login_name` STRING COMMENT '用户名称',
`nick_name` STRING COMMENT '用户昵称',
`name` STRING COMMENT '用户姓名',
`phone_num` STRING COMMENT '手机号码',
`email` STRING COMMENT '邮箱',
`user_level` STRING COMMENT '用户等级',
`birthday` STRING COMMENT '生日',
`gender` STRING COMMENT '性别',
`create_time` STRING COMMENT '创建时间',
`operate_time` STRING COMMENT '操作时间'
) COMMENT '用户表'
PARTITIONED BY (`dt` STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS
INPUTFORMAT 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/warehouse/gmall/ods/ods_user_info/';
1.2.28 ODS层业务表首日数据装载脚本
1)编写脚本
(1)在/home/atguigu/bin目录下创建脚本hdfs_to_ods_db_init.sh
[atguigu@hadoop102 bin]$ vim hdfs_to_ods_db_init.sh
在脚本中填写如下内容
#!/bin/bash
APP=gmall
if [ -n "$2" ] ;then
do_date=$2
else
echo "请传入日期参数"
exit
fi
ods_order_info="
load data inpath '/origin_data/$APP/db/order_info/$do_date' OVERWRITE into table ${APP}.ods_order_info partition(dt='$do_date');"
ods_order_detail="
load data inpath '/origin_data/$APP/db/order_detail/$do_date' OVERWRITE into table ${APP}.ods_order_detail partition(dt='$do_date');"
ods_sku_info="
load data inpath '/origin_data/$APP/db/sku_info/$do_date' OVERWRITE into table ${APP}.ods_sku_info partition(dt='$do_date');"
ods_user_info="
load data inpath '/origin_data/$APP/db/user_info/$do_date' OVERWRITE into table ${APP}.ods_user_info partition(dt='$do_date');"
ods_payment_info="
load data inpath '/origin_data/$APP/db/payment_info/$do_date' OVERWRITE into table ${APP}.ods_payment_info partition(dt='$do_date');"
ods_base_category1="
load data inpath '/origin_data/$APP/db/base_category1/$do_date' OVERWRITE into table ${APP}.ods_base_category1 partition(dt='$do_date');"
ods_base_category2="
load data inpath '/origin_data/$APP/db/base_category2/$do_date' OVERWRITE into table ${APP}.ods_base_category2 partition(dt='$do_date');"
ods_base_category3="
load data inpath '/origin_data/$APP/db/base_category3/$do_date' OVERWRITE into table ${APP}.ods_base_category3 partition(dt='$do_date'); "
ods_base_trademark="
load data inpath '/origin_data/$APP/db/base_trademark/$do_date' OVERWRITE into table ${APP}.ods_base_trademark partition(dt='$do_date'); "
ods_activity_info="
load data inpath '/origin_data/$APP/db/activity_info/$do_date' OVERWRITE into table ${APP}.ods_activity_info partition(dt='$do_date'); "
ods_cart_info="
load data inpath '/origin_data/$APP/db/cart_info/$do_date' OVERWRITE into table ${APP}.ods_cart_info partition(dt='$do_date'); "
ods_comment_info="
load data inpath '/origin_data/$APP/db/comment_info/$do_date' OVERWRITE into table ${APP}.ods_comment_info partition(dt='$do_date'); "
ods_coupon_info="
load data inpath '/origin_data/$APP/db/coupon_info/$do_date' OVERWRITE into table ${APP}.ods_coupon_info partition(dt='$do_date'); "
ods_coupon_use="
load data inpath '/origin_data/$APP/db/coupon_use/$do_date' OVERWRITE into table ${APP}.ods_coupon_use partition(dt='$do_date'); "
ods_favor_info="
load data inpath '/origin_data/$APP/db/favor_info/$do_date' OVERWRITE into table ${APP}.ods_favor_info partition(dt='$do_date'); "
ods_order_refund_info="
load data inpath '/origin_data/$APP/db/order_refund_info/$do_date' OVERWRITE into table ${APP}.ods_order_refund_info partition(dt='$do_date'); "
ods_order_status_log="
load data inpath '/origin_data/$APP/db/order_status_log/$do_date' OVERWRITE into table ${APP}.ods_order_status_log partition(dt='$do_date'); "
ods_spu_info="
load data inpath '/origin_data/$APP/db/spu_info/$do_date' OVERWRITE into table ${APP}.ods_spu_info partition(dt='$do_date'); "
ods_activity_rule="
load data inpath '/origin_data/$APP/db/activity_rule/$do_date' OVERWRITE into table ${APP}.ods_activity_rule partition(dt='$do_date');"
ods_base_dic="
load data inpath '/origin_data/$APP/db/base_dic/$do_date' OVERWRITE into table ${APP}.ods_base_dic partition(dt='$do_date'); "
ods_order_detail_activity="
load data inpath '/origin_data/$APP/db/order_detail_activity/$do_date' OVERWRITE into table ${APP}.ods_order_detail_activity partition(dt='$do_date'); "
ods_order_detail_coupon="
load data inpath '/origin_data/$APP/db/order_detail_coupon/$do_date' OVERWRITE into table ${APP}.ods_order_detail_coupon partition(dt='$do_date'); "
ods_refund_payment="
load data inpath '/origin_data/$APP/db/refund_payment/$do_date' OVERWRITE into table ${APP}.ods_refund_payment partition(dt='$do_date'); "
ods_sku_attr_value="
load data inpath '/origin_data/$APP/db/sku_attr_value/$do_date' OVERWRITE into table ${APP}.ods_sku_attr_value partition(dt='$do_date'); "
ods_sku_sale_attr_value="
load data inpath '/origin_data/$APP/db/sku_sale_attr_value/$do_date' OVERWRITE into table ${APP}.ods_sku_sale_attr_value partition(dt='$do_date'); "
ods_base_province="
load data inpath '/origin_data/$APP/db/base_province/$do_date' OVERWRITE into table ${APP}.ods_base_province;"
ods_base_region="
load data inpath '/origin_data/$APP/db/base_region/$do_date' OVERWRITE into table ${APP}.ods_base_region;"
case $1 in
"ods_order_info"){
hive -e "$ods_order_info"
};;
"ods_order_detail"){
hive -e "$ods_order_detail"
};;
"ods_sku_info"){
hive -e "$ods_sku_info"
};;
"ods_user_info"){
hive -e "$ods_user_info"
};;
"ods_payment_info"){
hive -e "$ods_payment_info"
};;
"ods_base_category1"){
hive -e "$ods_base_category1"
};;
"ods_base_category2"){
hive -e "$ods_base_category2"
};;
"ods_base_category3"){
hive -e "$ods_base_category3"
};;
"ods_base_trademark"){
hive -e "$ods_base_trademark"
};;
"ods_activity_info"){
hive -e "$ods_activity_info"
};;
"ods_cart_info"){
hive -e "$ods_cart_info"
};;
"ods_comment_info"){
hive -e "$ods_comment_info"
};;
"ods_coupon_info"){
hive -e "$ods_coupon_info"
};;
"ods_coupon_use"){
hive -e "$ods_coupon_use"
};;
"ods_favor_info"){
hive -e "$ods_favor_info"
};;
"ods_order_refund_info"){
hive -e "$ods_order_refund_info"
};;
"ods_order_status_log"){
hive -e "$ods_order_status_log"
};;
"ods_spu_info"){
hive -e "$ods_spu_info"
};;
"ods_activity_rule"){
hive -e "$ods_activity_rule"
};;
"ods_base_dic"){
hive -e "$ods_base_dic"
};;
"ods_order_detail_activity"){
hive -e "$ods_order_detail_activity"
};;
"ods_order_detail_coupon"){
hive -e "$ods_order_detail_coupon"
};;
"ods_refund_payment"){
hive -e "$ods_refund_payment"
};;
"ods_sku_attr_value"){
hive -e "$ods_sku_attr_value"
};;
"ods_sku_sale_attr_value"){
hive -e "$ods_sku_sale_attr_value"
};;
"ods_base_province"){
hive -e "$ods_base_province"
};;
"ods_base_region"){
hive -e "$ods_base_region"
};;
"all"){
hive -e "$ods_order_info$ods_order_detail$ods_sku_info$ods_user_info$ods_payment_info$ods_base_category1$ods_base_category2$ods_base_category3$ods_base_trademark$ods_activity_info$ods_cart_info$ods_comment_info$ods_coupon_info$ods_coupon_use$ods_favor_info$ods_order_refund_info$ods_order_status_log$ods_spu_info$ods_activity_rule$ods_base_dic$ods_order_detail_activity$ods_order_detail_coupon$ods_refund_payment$ods_sku_attr_value$ods_sku_sale_attr_value$ods_base_province$ods_base_region"
};;
esac
(2)增加执行权限
[atguigu@hadoop102 bin]$ chmod +x hdfs_to_ods_db_init.sh
2)脚本使用
(1)执行脚本
[atguigu@hadoop102 bin]$ hdfs_to_ods_db_init.sh all 2020-06-14
(2)查看数据是否导入成功
1.2.29 ODS层业务表每日数据装载脚本
1)编写脚本
(1)在/home/atguigu/bin目录下创建脚本hdfs_to_ods_db.sh
[atguigu@hadoop102 bin]$ vim hdfs_to_ods_db.sh
在脚本中填写如下内容
#!/bin/bash
APP=gmall
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$2" ] ;then
do_date=$2
else
do_date=`date -d "-1 day" +%F`
fi
ods_order_info="
load data inpath '/origin_data/$APP/db/order_info/$do_date' OVERWRITE into table ${APP}.ods_order_info partition(dt='$do_date');"
ods_order_detail="
load data inpath '/origin_data/$APP/db/order_detail/$do_date' OVERWRITE into table ${APP}.ods_order_detail partition(dt='$do_date');"
ods_sku_info="
load data inpath '/origin_data/$APP/db/sku_info/$do_date' OVERWRITE into table ${APP}.ods_sku_info partition(dt='$do_date');"
ods_user_info="
load data inpath '/origin_data/$APP/db/user_info/$do_date' OVERWRITE into table ${APP}.ods_user_info partition(dt='$do_date');"
ods_payment_info="
load data inpath '/origin_data/$APP/db/payment_info/$do_date' OVERWRITE into table ${APP}.ods_payment_info partition(dt='$do_date');"
ods_base_category1="
load data inpath '/origin_data/$APP/db/base_category1/$do_date' OVERWRITE into table ${APP}.ods_base_category1 partition(dt='$do_date');"
ods_base_category2="
load data inpath '/origin_data/$APP/db/base_category2/$do_date' OVERWRITE into table ${APP}.ods_base_category2 partition(dt='$do_date');"
ods_base_category3="
load data inpath '/origin_data/$APP/db/base_category3/$do_date' OVERWRITE into table ${APP}.ods_base_category3 partition(dt='$do_date'); "
ods_base_trademark="
load data inpath '/origin_data/$APP/db/base_trademark/$do_date' OVERWRITE into table ${APP}.ods_base_trademark partition(dt='$do_date'); "
ods_activity_info="
load data inpath '/origin_data/$APP/db/activity_info/$do_date' OVERWRITE into table ${APP}.ods_activity_info partition(dt='$do_date'); "
ods_cart_info="
load data inpath '/origin_data/$APP/db/cart_info/$do_date' OVERWRITE into table ${APP}.ods_cart_info partition(dt='$do_date'); "
ods_comment_info="
load data inpath '/origin_data/$APP/db/comment_info/$do_date' OVERWRITE into table ${APP}.ods_comment_info partition(dt='$do_date'); "
ods_coupon_info="
load data inpath '/origin_data/$APP/db/coupon_info/$do_date' OVERWRITE into table ${APP}.ods_coupon_info partition(dt='$do_date'); "
ods_coupon_use="
load data inpath '/origin_data/$APP/db/coupon_use/$do_date' OVERWRITE into table ${APP}.ods_coupon_use partition(dt='$do_date'); "
ods_favor_info="
load data inpath '/origin_data/$APP/db/favor_info/$do_date' OVERWRITE into table ${APP}.ods_favor_info partition(dt='$do_date'); "
ods_order_refund_info="
load data inpath '/origin_data/$APP/db/order_refund_info/$do_date' OVERWRITE into table ${APP}.ods_order_refund_info partition(dt='$do_date'); "
ods_order_status_log="
load data inpath '/origin_data/$APP/db/order_status_log/$do_date' OVERWRITE into table ${APP}.ods_order_status_log partition(dt='$do_date'); "
ods_spu_info="
load data inpath '/origin_data/$APP/db/spu_info/$do_date' OVERWRITE into table ${APP}.ods_spu_info partition(dt='$do_date'); "
ods_activity_rule="
load data inpath '/origin_data/$APP/db/activity_rule/$do_date' OVERWRITE into table ${APP}.ods_activity_rule partition(dt='$do_date');"
ods_base_dic="
load data inpath '/origin_data/$APP/db/base_dic/$do_date' OVERWRITE into table ${APP}.ods_base_dic partition(dt='$do_date'); "
ods_order_detail_activity="
load data inpath '/origin_data/$APP/db/order_detail_activity/$do_date' OVERWRITE into table ${APP}.ods_order_detail_activity partition(dt='$do_date'); "
ods_order_detail_coupon="
load data inpath '/origin_data/$APP/db/order_detail_coupon/$do_date' OVERWRITE into table ${APP}.ods_order_detail_coupon partition(dt='$do_date'); "
ods_refund_payment="
load data inpath '/origin_data/$APP/db/refund_payment/$do_date' OVERWRITE into table ${APP}.ods_refund_payment partition(dt='$do_date'); "
ods_sku_attr_value="
load data inpath '/origin_data/$APP/db/sku_attr_value/$do_date' OVERWRITE into table ${APP}.ods_sku_attr_value partition(dt='$do_date'); "
ods_sku_sale_attr_value="
load data inpath '/origin_data/$APP/db/sku_sale_attr_value/$do_date' OVERWRITE into table ${APP}.ods_sku_sale_attr_value partition(dt='$do_date'); "
case $1 in
"ods_order_info"){
hive -e "$ods_order_info"
};;
"ods_order_detail"){
hive -e "$ods_order_detail"
};;
"ods_sku_info"){
hive -e "$ods_sku_info"
};;
"ods_user_info"){
hive -e "$ods_user_info"
};;
"ods_payment_info"){
hive -e "$ods_payment_info"
};;
"ods_base_category1"){
hive -e "$ods_base_category1"
};;
"ods_base_category2"){
hive -e "$ods_base_category2"
};;
"ods_base_category3"){
hive -e "$ods_base_category3"
};;
"ods_base_trademark"){
hive -e "$ods_base_trademark"
};;
"ods_activity_info"){
hive -e "$ods_activity_info"
};;
"ods_cart_info"){
hive -e "$ods_cart_info"
};;
"ods_comment_info"){
hive -e "$ods_comment_info"
};;
"ods_coupon_info"){
hive -e "$ods_coupon_info"
};;
"ods_coupon_use"){
hive -e "$ods_coupon_use"
};;
"ods_favor_info"){
hive -e "$ods_favor_info"
};;
"ods_order_refund_info"){
hive -e "$ods_order_refund_info"
};;
"ods_order_status_log"){
hive -e "$ods_order_status_log"
};;
"ods_spu_info"){
hive -e "$ods_spu_info"
};;
"ods_activity_rule"){
hive -e "$ods_activity_rule"
};;
"ods_base_dic"){
hive -e "$ods_base_dic"
};;
"ods_order_detail_activity"){
hive -e "$ods_order_detail_activity"
};;
"ods_order_detail_coupon"){
hive -e "$ods_order_detail_coupon"
};;
"ods_refund_payment"){
hive -e "$ods_refund_payment"
};;
"ods_sku_attr_value"){
hive -e "$ods_sku_attr_value"
};;
"ods_sku_sale_attr_value"){
hive -e "$ods_sku_sale_attr_value"
};;
"all"){
hive -e "$ods_order_info$ods_order_detail$ods_sku_info$ods_user_info$ods_payment_info$ods_base_category1$ods_base_category2$ods_base_category3$ods_base_trademark$ods_activity_info$ods_cart_info$ods_comment_info$ods_coupon_info$ods_coupon_use$ods_favor_info$ods_order_refund_info$ods_order_status_log$ods_spu_info$ods_activity_rule$ods_base_dic$ods_order_detail_activity$ods_order_detail_coupon$ods_refund_payment$ods_sku_attr_value$ods_sku_sale_attr_value"
};;
esac
(2)修改权限
[atguigu@hadoop102 bin]$ chmod +x hdfs_to_ods_db.sh
2)脚本使用
(1)执行脚本
[atguigu@hadoop102 bin]$ hdfs_to_ods_db.sh all 2020-06-14
(2)查看数据是否导入成功
第二章 数仓搭建-DIM层
关于业务数据,DID层的搭建主要需要关注维度的退化,ODS层的业务数据有二十多张表,形成了比较复杂的关系模型,这种情况下想要获得一些细节维度的信息,通常需要进行多表join才能得到,为了使查询更加方便,也避免进行大量的表join计算,需要将关系模型进行适当的维度退化。
2.1 商品维度表(全量)
源自的表:
ods_sku_info 商品(SKU)表
ods_spu_info 商品销售属性表
ods_base_category3 三级品类表
ods_base_category2 二级品类表
ods_base_category1 一级品类表
ods_base_trademark 品牌表
ods_sku_attr_value 商品平台属性表
ods_sku_sale_attr_value 商品平台属性表
1.建表语句
DROP TABLE IF EXISTS dim_sku_info;
CREATE EXTERNAL TABLE dim_sku_info (
`id` STRING COMMENT '商品id',
`price` DECIMAL(16,2) COMMENT '商品价格',
`sku_name` STRING COMMENT '商品名称',
`sku_desc` STRING COMMENT '商品描述',
`weight` DECIMAL(16,2) COMMENT '重量',
`is_sale` BOOLEAN COMMENT '是否在售',
`spu_id` STRING COMMENT 'spu编号',
`spu_name` STRING COMMENT 'spu名称',
`category3_id` STRING COMMENT '三级分类id',
`category3_name` STRING COMMENT '三级分类名称',
`category2_id` STRING COMMENT '二级分类id',
`category2_name` STRING COMMENT '二级分类名称',
`category1_id` STRING COMMENT '一级分类id',
`category1_name` STRING COMMENT '一级分类名称',
`tm_id` STRING COMMENT '品牌id',
`tm_name` STRING COMMENT '品牌名称',
`sku_attr_values` ARRAY<STRUCT<attr_id:STRING,value_id:STRING,attr_name:STRING,value_name:STRING>> COMMENT '平台属性',
`sku_sale_attr_values` ARRAY<STRUCT<sale_attr_id:STRING,sale_attr_value_id:STRING,sale_attr_name:STRING,sale_attr_value_name:STRING>> COMMENT '销售属性',
`create_time` STRING COMMENT '创建时间'
) COMMENT '商品维度表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dim/dim_sku_info/'
TBLPROPERTIES ("parquet.compression"="lzo");
基本单位是SKU,平台属性和销售属性是结构体数组
2.分区规划
3.数据装载
1)Hive读取索引文件问题
(1)两种方式,分别查询数据有多少行
hive (gmall)> select * from ods_log;
Time taken: 0.706 seconds, Fetched: 2955 row(s)
hive (gmall)> select count(*) from ods_log;
2959
(2)两次查询结果不一致。
原因是select * from ods_log不执行MR操作,直接采用的是ods_log建表语句中指定的DeprecatedLzoTextInputFormat,能够识别lzo.index为索引文件。
select count(*) from ods_log执行MR操作,会先经过hive.input.format,其默认值为CombineHiveInputFormat,其会先将索引文件当成小文件合并,将其当做普通文件处理。
更严重的是,这会导致LZO文件无法切片。
解决办法:修改CombineHiveInputFormat为HiveInputFormat
hive (gmall)>
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
2)首日装载
with
sku as
(
select
id,
price,
sku_name,
sku_desc,
weight,
is_sale,
spu_id,
category3_id,
tm_id,
create_time
from ods_sku_info
where dt='2020-06-14'
),
spu as
(
select
id,
spu_name
from ods_spu_info
where dt='2020-06-14'
),
c3 as
(
select
id,
name,
category2_id
from ods_base_category3
where dt='2020-06-14'
),
c2 as
(
select
id,
name,
category1_id
from ods_base_category2
where dt='2020-06-14'
),
c1 as
(
select
id,
name
from ods_base_category1
where dt='2020-06-14'
),
tm as
(
select
id,
tm_name
from ods_base_trademark
where dt='2020-06-14'
),
attr as
(
select
sku_id,
collect_set(named_struct('attr_id',attr_id,'value_id',value_id,'attr_name',attr_name,'value_name',value_name)) attrs
from ods_sku_attr_value
where dt='2020-06-14'
group by sku_id
),
sale_attr as
(
select
sku_id,
collect_set(named_struct('sale_attr_id',sale_attr_id,'sale_attr_value_id',sale_attr_value_id,'sale_attr_name',sale_attr_name,'sale_attr_value_name',sale_attr_value_name)) sale_attrs
from ods_sku_sale_attr_value
where dt='2020-06-14'
group by sku_id
)
insert overwrite table dim_sku_info partition(dt='2020-06-14')
select
sku.id,
sku.price,
sku.sku_name,
sku.sku_desc,
sku.weight,
sku.is_sale,
sku.spu_id,
spu.spu_name,
sku.category3_id,
c3.name,
c3.category2_id,
c2.name,
c2.category1_id,
c1.name,
sku.tm_id,
tm.tm_name,
attr.attrs,
sale_attr.sale_attrs,
sku.create_time
from sku
left join spu on sku.spu_id=spu.id
left join c3 on sku.category3_id=c3.id
left join c2 on c3.category2_id=c2.id
left join c1 on c2.category1_id=c1.id
left join tm on sku.tm_id=tm.id
left join attr on sku.id=attr.sku_id
left join sale_attr on sku.id=sale_attr.sku_id;
left join表示join时以左表的全部数据为准,右边与之关联
3)每日装载
with
sku as
(
select
id,
price,
sku_name,
sku_desc,
weight,
is_sale,
spu_id,
category3_id,
tm_id,
create_time
from ods_sku_info
where dt='2020-06-15'
),
spu as
(
select
id,
spu_name
from ods_spu_info
where dt='2020-06-15'
),
c3 as
(
select
id,
name,
category2_id
from ods_base_category3
where dt='2020-06-15'
),
c2 as
(
select
id,
name,
category1_id
from ods_base_category2
where dt='2020-06-15'
),
c1 as
(
select
id,
name
from ods_base_category1
where dt='2020-06-15'
),
tm as
(
select
id,
tm_name
from ods_base_trademark
where dt='2020-06-15'
),
attr as
(
select
sku_id,
collect_set(named_struct('attr_id',attr_id,'value_id',value_id,'attr_name',attr_name,'value_name',value_name)) attrs
from ods_sku_attr_value
where dt='2020-06-15'
group by sku_id
),
sale_attr as
(
select
sku_id,
collect_set(named_struct('sale_attr_id',sale_attr_id,'sale_attr_value_id',sale_attr_value_id,'sale_attr_name',sale_attr_name,'sale_attr_value_name',sale_attr_value_name)) sale_attrs
from ods_sku_sale_attr_value
where dt='2020-06-15'
group by sku_id
)
insert overwrite table dim_sku_info partition(dt='2020-06-15')
select
sku.id,
sku.price,
sku.sku_name,
sku.sku_desc,
sku.weight,
sku.is_sale,
sku.spu_id,
spu.spu_name,
sku.category3_id,
c3.name,
c3.category2_id,
c2.name,
c2.category1_id,
c1.name,
sku.tm_id,
tm.tm_name,
attr.attrs,
sale_attr.sale_attrs,
sku.create_time
from sku
left join spu on sku.spu_id=spu.id
left join c3 on sku.category3_id=c3.id
left join c2 on c3.category2_id=c2.id
left join c1 on c2.category1_id=c1.id
left join tm on sku.tm_id=tm.id
left join attr on sku.id=attr.sku_id
left join sale_attr on sku.id=sale_attr.sku_id;
2.2 优惠券维度表(全量)
直接源自ods_coupon_info
1.建表语句
DROP TABLE IF EXISTS dim_coupon_info;
CREATE EXTERNAL TABLE dim_coupon_info(
`id` STRING COMMENT '购物券编号',
`coupon_name` STRING COMMENT '购物券名称',
`coupon_type` STRING COMMENT '购物券类型 1 现金券 2 折扣券 3 满减券 4 满件打折券',
`condition_amount` DECIMAL(16,2) COMMENT '满额数',
`condition_num` BIGINT COMMENT '满件数',
`activity_id` STRING COMMENT '活动编号',
`benefit_amount` DECIMAL(16,2) COMMENT '减金额',
`benefit_discount` DECIMAL(16,2) COMMENT '折扣',
`create_time` STRING COMMENT '创建时间',
`range_type` STRING COMMENT '范围类型 1、商品 2、品类 3、品牌',
`limit_num` BIGINT COMMENT '最多领取次数',
`taken_count` BIGINT COMMENT '已领取次数',
`start_time` STRING COMMENT '可以领取的开始日期',
`end_time` STRING COMMENT '可以领取的结束日期',
`operate_time` STRING COMMENT '修改时间',
`expire_time` STRING COMMENT '过期时间'
) COMMENT '优惠券维度表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dim/dim_coupon_info/'
TBLPROPERTIES ("parquet.compression"="lzo");
基本单位是优惠券活动
2.分区规划
3.数据装载
1)首日装载
insert overwrite table dim_coupon_info partition(dt='2020-06-14')
select
id,
coupon_name,
coupon_type,
condition_amount,
condition_num,
activity_id,
benefit_amount,
benefit_discount,
create_time,
range_type,
limit_num,
taken_count,
start_time,
end_time,
operate_time,
expire_time
from ods_coupon_info
where dt='2020-06-14';
2)每日装载
insert overwrite table dim_coupon_info partition(dt='2020-06-15')
select
id,
coupon_name,
coupon_type,
condition_amount,
condition_num,
activity_id,
benefit_amount,
benefit_discount,
create_time,
range_type,
limit_num,
taken_count,
start_time,
end_time,
operate_time,
expire_time
from ods_coupon_info
where dt='2020-06-15';
2.3 活动维度表(全量)
源自的表:
ods_activity_rule 活动信息表
ods_activity_info 活动规则表
1.建表语句
DROP TABLE IF EXISTS dim_activity_rule_info;
CREATE EXTERNAL TABLE dim_activity_rule_info(
`activity_rule_id` STRING COMMENT '活动规则ID',
`activity_id` STRING COMMENT '活动ID',
`activity_name` STRING COMMENT '活动名称',
`activity_type` STRING COMMENT '活动类型',
`start_time` STRING COMMENT '开始时间',
`end_time` STRING COMMENT '结束时间',
`create_time` STRING COMMENT '创建时间',
`condition_amount` DECIMAL(16,2) COMMENT '满减金额',
`condition_num` BIGINT COMMENT '满减件数',
`benefit_amount` DECIMAL(16,2) COMMENT '优惠金额',
`benefit_discount` DECIMAL(16,2) COMMENT '优惠折扣',
`benefit_level` STRING COMMENT '优惠级别'
) COMMENT '活动信息表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dim/dim_activity_rule_info/'
TBLPROPERTIES ("parquet.compression"="lzo");
2.分区规划
3.数据装载
1)首日装载
insert overwrite table dim_activity_rule_info partition(dt='2020-06-14')
select
ar.id,
ar.activity_id,
ai.activity_name,
ar.activity_type,
ai.start_time,
ai.end_time,
ai.create_time,
ar.condition_amount,
ar.condition_num,
ar.benefit_amount,
ar.benefit_discount,
ar.benefit_level
from
(
select
id,
activity_id,
activity_type,
condition_amount,
condition_num,
benefit_amount,
benefit_discount,
benefit_level
from ods_activity_rule
where dt='2020-06-14'
)ar
left join
(
select
id,
activity_name,
start_time,
end_time,
create_time
from ods_activity_info
where dt='2020-06-14'
)ai
on ar.activity_id=ai.id;
2)每日转载
insert overwrite table dim_activity_rule_info partition(dt='2020-06-15')
select
ar.id,
ar.activity_id,
ai.activity_name,
ar.activity_type,
ai.start_time,
ai.end_time,
ai.create_time,
ar.condition_amount,
ar.condition_num,
ar.benefit_amount,
ar.benefit_discount,
ar.benefit_level
from
(
select
id,
activity_id,
activity_type,
condition_amount,
condition_num,
benefit_amount,
benefit_discount,
benefit_level
from ods_activity_rule
where dt='2020-06-15'
)ar
left join
(
select
id,
activity_name,
start_time,
end_time,
create_time
from ods_activity_info
where dt='2020-06-15'
)ai
on ar.activity_id=ai.id;
2.4 地区维度表(特殊)
源自的表:
ods_base_province 省份表
ods_base_region 地区表
1.建表语句
DROP TABLE IF EXISTS dim_base_province;
CREATE EXTERNAL TABLE dim_base_province (
`id` STRING COMMENT 'id',
`province_name` STRING COMMENT '省市名称',
`area_code` STRING COMMENT '地区编码',
`iso_code` STRING COMMENT 'ISO-3166编码,供可视化使用',
`iso_3166_2` STRING COMMENT 'IOS-3166-2编码,供可视化使用',
`region_id` STRING COMMENT '地区id',
`region_name` STRING COMMENT '地区名称'
) COMMENT '地区维度表'
STORED AS PARQUET
LOCATION '/warehouse/gmall/dim/dim_base_province/'
TBLPROPERTIES ("parquet.compression"="lzo");
2.数据装载
地区维度表数据相对稳定,变化概率较低,故无需每日装载。
insert overwrite table dim_base_province
select
bp.id,
bp.name,
bp.area_code,
bp.iso_code,
bp.iso_3166_2,
bp.region_id,
br.region_name
from ods_base_province bp
join ods_base_region br on bp.region_id = br.id;
2.5 时间维度表(特殊)
1.建表语句
DROP TABLE IF EXISTS dim_date_info;
CREATE EXTERNAL TABLE dim_date_info(
`date_id` STRING COMMENT '日',
`week_id` STRING COMMENT '周ID',
`week_day` STRING COMMENT '周几',
`day` STRING COMMENT '每月的第几天',
`month` STRING COMMENT '第几月',
`quarter` STRING COMMENT '第几季度',
`year` STRING COMMENT '年',
`is_workday` STRING COMMENT '是否是工作日',
`holiday_id` STRING COMMENT '节假日'
) COMMENT '时间维度表'
STORED AS PARQUET
LOCATION '/warehouse/gmall/dim/dim_date_info/'
TBLPROPERTIES ("parquet.compression"="lzo");
2.数据装载
通常情况下,时间维度表的数据并不是来自于业务系统,而是手动写入,并且由于时间维度表数据的可预见性,无须每日导入,一般可一次性导入一年的数据。
1)创建临时表
DROP TABLE IF EXISTS tmp_dim_date_info;
CREATE EXTERNAL TABLE tmp_dim_date_info (
`date_id` STRING COMMENT '日',
`week_id` STRING COMMENT '周ID',
`week_day` STRING COMMENT '周几',
`day` STRING COMMENT '每月的第几天',
`month` STRING COMMENT '第几月',
`quarter` STRING COMMENT '第几季度',
`year` STRING COMMENT '年',
`is_workday` STRING COMMENT '是否是工作日',
`holiday_id` STRING COMMENT '节假日'
) COMMENT '时间维度表'
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
LOCATION '/warehouse/gmall/tmp/tmp_dim_date_info/';
2)将数据文件上传到HFDS上临时表指定路径/warehouse/gmall/tmp/tmp_dim_date_info/
hdfs dfs -mkdir -p /warehouse/gmall/tmp/tmp_dim_date_info/
hdfs dfs -put date_info.txt /warehouse/gmall/tmp/tmp_dim_date_info/
3)执行以下语句将其导入时间维度表
insert overwrite table dim_date_info select * from tmp_dim_date_info;
4)检查数据是否导入成功
select * from dim_date_info;
2.6 用户维度表(拉链表)
2.6.1 拉链表概述
1)什么是拉链表
2)为什么要做拉链表
3)如何使用拉链表
4)拉链表形成过程
2.6.2 制作拉链表
1.建表语句
DROP TABLE IF EXISTS dim_user_info;
CREATE EXTERNAL TABLE dim_user_info(
`id` STRING COMMENT '用户id',
`login_name` STRING COMMENT '用户名称',
`nick_name` STRING COMMENT '用户昵称',
`name` STRING COMMENT '用户姓名',
`phone_num` STRING COMMENT '手机号码',
`email` STRING COMMENT '邮箱',
`user_level` STRING COMMENT '用户等级',
`birthday` STRING COMMENT '生日',
`gender` STRING COMMENT '性别',
`create_time` STRING COMMENT '创建时间',
`operate_time` STRING COMMENT '操作时间',
`start_date` STRING COMMENT '开始日期',
`end_date` STRING COMMENT '结束日期'
) COMMENT '用户表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dim/dim_user_info/'
TBLPROPERTIES ("parquet.compression"="lzo");
2.分区规划
3.数据装载
1)首日装载
拉链表首日装载,需要进行初始化操作,具体工作为将截止到初始化当日的全部历史用户导入一次性导入到拉链表中。目前的ods_user_info表的第一个分区,即2020-06-14分区中就是全部的历史用户,故将该分区数据进行一定处理后导入拉链表的9999-99-99分区即可。
insert overwrite table dim_user_info partition(dt='9999-99-99')
select
id,
login_name,
nick_name,
md5(name),
md5(phone_num),
md5(email),
user_level,
birthday,
gender,
create_time,
operate_time,
'2020-06-14',
'9999-99-99'
from ods_user_info
where dt='2020-06-14';
2)每日装载
(1)实现思路
修改过的进入过期状态,修改结束日期为前一天日期,写入过期分区,使用动态分区,分别写入9999-99-99分区和2020-06-14分区。
(2)sql编写
-- dim前一日的全量最新 与 ods当日新增及变化进行full join得到一张大表
with
tmp as
(
select
old.id old_id,
old.login_name old_login_name,
old.nick_name old_nick_name,
old.name old_name,
old.phone_num old_phone_num,
old.email old_email,
old.user_level old_user_level,
old.birthday old_birthday,
old.gender old_gender,
old.create_time old_create_time,
old.operate_time old_operate_time,
old.start_date old_start_date,
old.end_date old_end_date,
new.id new_id,
new.login_name new_login_name,
new.nick_name new_nick_name,
new.name new_name,
new.phone_num new_phone_num,
new.email new_email,
new.user_level new_user_level,
new.birthday new_birthday,
new.gender new_gender,
new.create_time new_create_time,
new.operate_time new_operate_time,
new.start_date new_start_date,
new.end_date new_end_date
from
( -- dim前一日的全量最新
select
id,
login_name,
nick_name,
name,
phone_num,
email,
user_level,
birthday,
gender,
create_time,
operate_time,
start_date,
end_date
from dim_user_info
where dt='9999-99-99'
)old
full outer join
(
-- ods当日新增及变化
select
id,
login_name,
nick_name,
md5(name) name,
md5(phone_num) phone_num,
md5(email) email,
user_level,
birthday,
gender,
create_time,
operate_time,
'2020-06-15' start_date,
'9999-99-99' end_date
from ods_user_info
where dt='2020-06-15'
)new
on old.id=new.id
)
insert overwrite table dim_user_info partition(dt)
-- 截止当日的全量最新
select
nvl(new_id,old_id),
nvl(new_login_name,old_login_name),
nvl(new_nick_name,old_nick_name),
nvl(new_name,old_name),
nvl(new_phone_num,old_phone_num),
nvl(new_email,old_email),
nvl(new_user_level,old_user_level),
nvl(new_birthday,old_birthday),
nvl(new_gender,old_gender),
nvl(new_create_time,old_create_time),
nvl(new_operate_time,old_operate_time),
nvl(new_start_date,old_start_date),
nvl(new_end_date,old_end_date),
nvl(new_end_date,old_end_date) dt
from tmp
union all
-- 过期状态
select
old_id,
old_login_name,
old_nick_name,
old_name,
old_phone_num,
old_email,
old_user_level,
old_birthday,
old_gender,
old_create_time,
old_operate_time,
old_start_date,
cast(date_add('2020-06-15',-1) as string),
cast(date_add('2020-06-15',-1) as string) dt
from tmp
where new_id is not null and old_id is not null;
NVL()
函数的功能是实现空值的转换。例如
NVL(string1,replace_with)
中:
当第一个参数(string1
)为空时,返回第二个参数(replace_with
);
当第一个参数(string1
)不为空时,则返回第一个参数(string1
)。
2.7 DIM层首日数据装载脚本
1)编写脚本
(1)在/home/atguigu/bin目录下创建脚本ods_to_dim_db_init.sh
[atguigu@hadoop102 bin]$ vim ods_to_dim_db_init.sh
在脚本中填写如下内容
#!/bin/bash
APP=gmall
if [ -n "$2" ] ;then
do_date=$2
else
echo "请传入日期参数"
exit
fi
dim_user_info="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dim_user_info partition(dt='9999-99-99')
select
id,
login_name,
nick_name,
md5(name),
md5(phone_num),
md5(email),
user_level,
birthday,
gender,
create_time,
operate_time,
'$do_date',
'9999-99-99'
from ${APP}.ods_user_info
where dt='$do_date';
"
dim_sku_info="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
with
sku as
(
select
id,
price,
sku_name,
sku_desc,
weight,
is_sale,
spu_id,
category3_id,
tm_id,
create_time
from ${APP}.ods_sku_info
where dt='$do_date'
),
spu as
(
select
id,
spu_name
from ${APP}.ods_spu_info
where dt='$do_date'
),
c3 as
(
select
id,
name,
category2_id
from ${APP}.ods_base_category3
where dt='$do_date'
),
c2 as
(
select
id,
name,
category1_id
from ${APP}.ods_base_category2
where dt='$do_date'
),
c1 as
(
select
id,
name
from ${APP}.ods_base_category1
where dt='$do_date'
),
tm as
(
select
id,
tm_name
from ${APP}.ods_base_trademark
where dt='$do_date'
),
attr as
(
select
sku_id,
collect_set(named_struct('attr_id',attr_id,'value_id',value_id,'attr_name',attr_name,'value_name',value_name)) attrs
from ${APP}.ods_sku_attr_value
where dt='$do_date'
group by sku_id
),
sale_attr as
(
select
sku_id,
collect_set(named_struct('sale_attr_id',sale_attr_id,'sale_attr_value_id',sale_attr_value_id,'sale_attr_name',sale_attr_name,'sale_attr_value_name',sale_attr_value_name)) sale_attrs
from ${APP}.ods_sku_sale_attr_value
where dt='$do_date'
group by sku_id
)
insert overwrite table ${APP}.dim_sku_info partition(dt='$do_date')
select
sku.id,
sku.price,
sku.sku_name,
sku.sku_desc,
sku.weight,
sku.is_sale,
sku.spu_id,
spu.spu_name,
sku.category3_id,
c3.name,
c3.category2_id,
c2.name,
c2.category1_id,
c1.name,
sku.tm_id,
tm.tm_name,
attr.attrs,
sale_attr.sale_attrs,
sku.create_time
from sku
left join spu on sku.spu_id=spu.id
left join c3 on sku.category3_id=c3.id
left join c2 on c3.category2_id=c2.id
left join c1 on c2.category1_id=c1.id
left join tm on sku.tm_id=tm.id
left join attr on sku.id=attr.sku_id
left join sale_attr on sku.id=sale_attr.sku_id;
"
dim_base_province="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dim_base_province
select
bp.id,
bp.name,
bp.area_code,
bp.iso_code,
bp.iso_3166_2,
bp.region_id,
br.region_name
from ${APP}.ods_base_province bp
join ${APP}.ods_base_region br on bp.region_id = br.id;
"
dim_coupon_info="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dim_coupon_info partition(dt='$do_date')
select
id,
coupon_name,
coupon_type,
condition_amount,
condition_num,
activity_id,
benefit_amount,
benefit_discount,
create_time,
range_type,
limit_num,
taken_count,
start_time,
end_time,
operate_time,
expire_time
from ${APP}.ods_coupon_info
where dt='$do_date';
"
dim_activity_rule_info="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dim_activity_rule_info partition(dt='$do_date')
select
ar.id,
ar.activity_id,
ai.activity_name,
ar.activity_type,
ai.start_time,
ai.end_time,
ai.create_time,
ar.condition_amount,
ar.condition_num,
ar.benefit_amount,
ar.benefit_discount,
ar.benefit_level
from
(
select
id,
activity_id,
activity_type,
condition_amount,
condition_num,
benefit_amount,
benefit_discount,
benefit_level
from ${APP}.ods_activity_rule
where dt='$do_date'
)ar
left join
(
select
id,
activity_name,
start_time,
end_time,
create_time
from ${APP}.ods_activity_info
where dt='$do_date'
)ai
on ar.activity_id=ai.id;
"
case $1 in
"dim_user_info"){
hive -e "$dim_user_info"
};;
"dim_sku_info"){
hive -e "$dim_sku_info"
};;
"dim_base_province"){
hive -e "$dim_base_province"
};;
"dim_coupon_info"){
hive -e "$dim_coupon_info"
};;
"dim_activity_rule_info"){
hive -e "$dim_activity_rule_info"
};;
"all"){
hive -e "$dim_user_info$dim_sku_info$dim_coupon_info$dim_activity_rule_info$dim_base_province"
};;
esac
(2)增加执行权限
[atguigu@hadoop102 bin]$ chmod +x ods_to_dim_db_init.sh
2)脚本使用
(1)执行脚本
[atguigu@hadoop102 bin]$ ods_to_dim_db_init.sh all 2020-06-14
注意:该脚本不包含时间维度表的装载,时间维度表需手动装载数据,参考3.5节。
(2)查看数据是否导入成功
2.8 DIM层每日数据装载脚本
1)编写脚本
(1)在/home/atguigu/bin目录下创建脚本ods_to_dim_db.sh
[atguigu@hadoop102 bin]$ vim ods_to_dim_db.sh
在脚本中填写如下内容
#!/bin/bash
APP=gmall
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$2" ] ;then
do_date=$2
else
do_date=`date -d "-1 day" +%F`
fi
dim_user_info="
set hive.exec.dynamic.partition.mode=nonstrict;
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
with
tmp as
(
select
old.id old_id,
old.login_name old_login_name,
old.nick_name old_nick_name,
old.name old_name,
old.phone_num old_phone_num,
old.email old_email,
old.user_level old_user_level,
old.birthday old_birthday,
old.gender old_gender,
old.create_time old_create_time,
old.operate_time old_operate_time,
old.start_date old_start_date,
old.end_date old_end_date,
new.id new_id,
new.login_name new_login_name,
new.nick_name new_nick_name,
new.name new_name,
new.phone_num new_phone_num,
new.email new_email,
new.user_level new_user_level,
new.birthday new_birthday,
new.gender new_gender,
new.create_time new_create_time,
new.operate_time new_operate_time,
new.start_date new_start_date,
new.end_date new_end_date
from
(
select
id,
login_name,
nick_name,
name,
phone_num,
email,
user_level,
birthday,
gender,
create_time,
operate_time,
start_date,
end_date
from ${APP}.dim_user_info
where dt='9999-99-99'
and start_date<'$do_date'
)old
full outer join
(
select
id,
login_name,
nick_name,
md5(name) name,
md5(phone_num) phone_num,
md5(email) email,
user_level,
birthday,
gender,
create_time,
operate_time,
'$do_date' start_date,
'9999-99-99' end_date
from ${APP}.ods_user_info
where dt='$do_date'
)new
on old.id=new.id
)
insert overwrite table ${APP}.dim_user_info partition(dt)
select
nvl(new_id,old_id),
nvl(new_login_name,old_login_name),
nvl(new_nick_name,old_nick_name),
nvl(new_name,old_name),
nvl(new_phone_num,old_phone_num),
nvl(new_email,old_email),
nvl(new_user_level,old_user_level),
nvl(new_birthday,old_birthday),
nvl(new_gender,old_gender),
nvl(new_create_time,old_create_time),
nvl(new_operate_time,old_operate_time),
nvl(new_start_date,old_start_date),
nvl(new_end_date,old_end_date),
nvl(new_end_date,old_end_date) dt
from tmp
union all
select
old_id,
old_login_name,
old_nick_name,
old_name,
old_phone_num,
old_email,
old_user_level,
old_birthday,
old_gender,
old_create_time,
old_operate_time,
old_start_date,
cast(date_add('$do_date',-1) as string),
cast(date_add('$do_date',-1) as string) dt
from tmp
where new_id is not null and old_id is not null;
"
dim_sku_info="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
with
sku as
(
select
id,
price,
sku_name,
sku_desc,
weight,
is_sale,
spu_id,
category3_id,
tm_id,
create_time
from ${APP}.ods_sku_info
where dt='$do_date'
),
spu as
(
select
id,
spu_name
from ${APP}.ods_spu_info
where dt='$do_date'
),
c3 as
(
select
id,
name,
category2_id
from ${APP}.ods_base_category3
where dt='$do_date'
),
c2 as
(
select
id,
name,
category1_id
from ${APP}.ods_base_category2
where dt='$do_date'
),
c1 as
(
select
id,
name
from ${APP}.ods_base_category1
where dt='$do_date'
),
tm as
(
select
id,
tm_name
from ${APP}.ods_base_trademark
where dt='$do_date'
),
attr as
(
select
sku_id,
collect_set(named_struct('attr_id',attr_id,'value_id',value_id,'attr_name',attr_name,'value_name',value_name)) attrs
from ${APP}.ods_sku_attr_value
where dt='$do_date'
group by sku_id
),
sale_attr as
(
select
sku_id,
collect_set(named_struct('sale_attr_id',sale_attr_id,'sale_attr_value_id',sale_attr_value_id,'sale_attr_name',sale_attr_name,'sale_attr_value_name',sale_attr_value_name)) sale_attrs
from ${APP}.ods_sku_sale_attr_value
where dt='$do_date'
group by sku_id
)
insert overwrite table ${APP}.dim_sku_info partition(dt='$do_date')
select
sku.id,
sku.price,
sku.sku_name,
sku.sku_desc,
sku.weight,
sku.is_sale,
sku.spu_id,
spu.spu_name,
sku.category3_id,
c3.name,
c3.category2_id,
c2.name,
c2.category1_id,
c1.name,
sku.tm_id,
tm.tm_name,
attr.attrs,
sale_attr.sale_attrs,
sku.create_time
from sku
left join spu on sku.spu_id=spu.id
left join c3 on sku.category3_id=c3.id
left join c2 on c3.category2_id=c2.id
left join c1 on c2.category1_id=c1.id
left join tm on sku.tm_id=tm.id
left join attr on sku.id=attr.sku_id
left join sale_attr on sku.id=sale_attr.sku_id;
"
dim_base_province="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dim_base_province
select
bp.id,
bp.name,
bp.area_code,
bp.iso_code,
bp.iso_3166_2,
bp.region_id,
bp.name
from ${APP}.ods_base_province bp
join ${APP}.ods_base_region br on bp.region_id = br.id;
"
dim_coupon_info="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dim_coupon_info partition(dt='$do_date')
select
id,
coupon_name,
coupon_type,
condition_amount,
condition_num,
activity_id,
benefit_amount,
benefit_discount,
create_time,
range_type,
limit_num,
taken_count,
start_time,
end_time,
operate_time,
expire_time
from ${APP}.ods_coupon_info
where dt='$do_date';
"
dim_activity_rule_info="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dim_activity_rule_info partition(dt='$do_date')
select
ar.id,
ar.activity_id,
ai.activity_name,
ar.activity_type,
ai.start_time,
ai.end_time,
ai.create_time,
ar.condition_amount,
ar.condition_num,
ar.benefit_amount,
ar.benefit_discount,
ar.benefit_level
from
(
select
id,
activity_id,
activity_type,
condition_amount,
condition_num,
benefit_amount,
benefit_discount,
benefit_level
from ${APP}.ods_activity_rule
where dt='$do_date'
)ar
left join
(
select
id,
activity_name,
start_time,
end_time,
create_time
from ${APP}.ods_activity_info
where dt='$do_date'
)ai
on ar.activity_id=ai.id;
"
case $1 in
"dim_user_info"){
hive -e "$dim_user_info"
};;
"dim_sku_info"){
hive -e "$dim_sku_info"
};;
"dim_base_province"){
hive -e "$dim_base_province"
};;
"dim_coupon_info"){
hive -e "$dim_coupon_info"
};;
"dim_activity_rule_info"){
hive -e "$dim_activity_rule_info"
};;
"all"){
hive -e "$dim_user_info$dim_sku_info$dim_coupon_info$dim_activity_rule_info"
};;
esac
(2)增加执行权限
[atguigu@hadoop102 bin]$ chmod +x ods_to_dim_db.sh
2)脚本使用
(1)执行脚本
[atguigu@hadoop102 bin]$ ods_to_dim_db.sh all 2020-06-14
(2)查看数据是否导入成功
第三章 数仓搭建-DWD层
1)对用户行为数据解析。
2)对业务数据采用维度模型重新建模。
使用Parquet格式进行列式存储,保存为LZO压缩格式,以减少存储空间的占用。
Parquet的缺点
- 不支持update, insert, delete, ACID
Parquet的应用
- 适用于字段数非常多,无更新,只取部分列的查询。
3.1 DWD层(用户行为日志)
3.1.1 日志解析思路
1)日志结构回顾
(1)页面埋点日志
(2)启动日志
2)日志解析思路
日志数据为JSON格式,Hive内置了JSON字符串解析工具,从而可以得到字符串内字段的对应信息,根据实例数据中的字段信息,可以确定启动日志表中所包含的字段。
3.1.2 get_json_object函数使用
1)数据
[{"name":"大郎","sex":"男","age":"25"},{"name":"西门庆","sex":"男","age":"47"}]
2)取出第一个json对象
hive (gmall)>
select get_json_object('[{"name":"大郎","sex":"男","age":"25"},{"name":"西门 庆","sex":"男","age":"47"}]','$[0]');
结果是:
{"name":"大郎","sex":"男","age":"25"}
3)取出第一个json的age字段的值
hive (gmall)>
SELECT get_json_object('[{"name":"大郎","sex":"男","age":"25"},{"name":"西门庆","sex":"男","age":"47"}]',"$[0].age");
结果是:25
3.1.3 启动日志表
启动日志解析思路:启动日志表中每行数据对应一个启动记录,一个启动记录应该包含日志中的公共信息和启动信息。先将所有包含start字段的日志过滤出来,然后使用get_json_object函数解析每个字段。
1)建表语句
DROP TABLE IF EXISTS dwd_start_log;
CREATE EXTERNAL TABLE dwd_start_log(
`area_code` STRING COMMENT '地区编码',
`brand` STRING COMMENT '手机品牌',
`channel` STRING COMMENT '渠道',
`is_new` STRING COMMENT '是否首次启动',
`model` STRING COMMENT '手机型号',
`mid_id` STRING COMMENT '设备id',
`os` STRING COMMENT '操作系统',
`user_id` STRING COMMENT '会员id',
`version_code` STRING COMMENT 'app版本号',
`entry` STRING COMMENT 'icon手机图标 notice 通知 install 安装后启动',
`loading_time` BIGINT COMMENT '启动加载时间',
`open_ad_id` STRING COMMENT '广告页ID ',
`open_ad_ms` BIGINT COMMENT '广告总共播放时间',
`open_ad_skip_ms` BIGINT COMMENT '用户跳过广告时点',
`ts` BIGINT COMMENT '时间'
) COMMENT '启动日志表'
PARTITIONED BY (`dt` STRING) -- 按照时间创建分区
STORED AS PARQUET -- 采用parquet列式存储
LOCATION '/warehouse/gmall/dwd/dwd_start_log' -- 指定在HDFS上存储位置
TBLPROPERTIES('parquet.compression'='lzo') -- 采用LZO压缩
;
2)数据导入
insert overwrite table dwd_start_log partition(dt='2020-06-14')
select
get_json_object(line,'$.common.ar'),
get_json_object(line,'$.common.ba'),
get_json_object(line,'$.common.ch'),
get_json_object(line,'$.common.is_new'),
get_json_object(line,'$.common.md'),
get_json_object(line,'$.common.mid'),
get_json_object(line,'$.common.os'),
get_json_object(line,'$.common.uid'),
get_json_object(line,'$.common.vc'),
get_json_object(line,'$.start.entry'),
get_json_object(line,'$.start.loading_time'),
get_json_object(line,'$.start.open_ad_id'),
get_json_object(line,'$.start.open_ad_ms'),
get_json_object(line,'$.start.open_ad_skip_ms'),
get_json_object(line,'$.ts')
from ods_log
where dt='2020-06-14'
and get_json_object(line,'$.start') is not null;
3)查看数据
select * from dwd_start_log where dt='2020-06-14' limit 2;
3.1.4 页面日志表
页面日志解析思路:页面日志表中每行数据对应一个页面访问记录,一个页面访问记录应该包含日志中的公共信息和页面信息。先将所有包含page字段的日志过滤出来,然后使用get_json_object函数解析每个字段。
1)建表语句
DROP TABLE IF EXISTS dwd_page_log;
CREATE EXTERNAL TABLE dwd_page_log(
`area_code` STRING COMMENT '地区编码',
`brand` STRING COMMENT '手机品牌',
`channel` STRING COMMENT '渠道',
`is_new` STRING COMMENT '是否首次启动',
`model` STRING COMMENT '手机型号',
`mid_id` STRING COMMENT '设备id',
`os` STRING COMMENT '操作系统',
`user_id` STRING COMMENT '会员id',
`version_code` STRING COMMENT 'app版本号',
`during_time` BIGINT COMMENT '持续时间毫秒',
`page_item` STRING COMMENT '目标id ',
`page_item_type` STRING COMMENT '目标类型',
`last_page_id` STRING COMMENT '上页类型',
`page_id` STRING COMMENT '页面ID ',
`source_type` STRING COMMENT '来源类型',
`ts` bigint
) COMMENT '页面日志表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dwd/dwd_page_log'
TBLPROPERTIES('parquet.compression'='lzo');
2)数据导入
insert overwrite table dwd_page_log partition(dt='2020-06-14')
select
get_json_object(line,'$.common.ar'),
get_json_object(line,'$.common.ba'),
get_json_object(line,'$.common.ch'),
get_json_object(line,'$.common.is_new'),
get_json_object(line,'$.common.md'),
get_json_object(line,'$.common.mid'),
get_json_object(line,'$.common.os'),
get_json_object(line,'$.common.uid'),
get_json_object(line,'$.common.vc'),
get_json_object(line,'$.page.during_time'),
get_json_object(line,'$.page.item'),
get_json_object(line,'$.page.item_type'),
get_json_object(line,'$.page.last_page_id'),
get_json_object(line,'$.page.page_id'),
get_json_object(line,'$.page.source_type'),
get_json_object(line,'$.ts')
from ods_log
where dt='2020-06-14'
and get_json_object(line,'$.page') is not null;
3)查看数据
select * from dwd_page_log where dt='2020-06-14' limit 2;
3.1.5 动作日志表
动作日志解析思路:动作日志表中每行数据对应用户的一个动作记录,一个动作记录应当包含公共信息、页面信息以及动作信息。先将包含action字段的日志过滤出来,然后通过UDTF函数,将action数组“炸开”(类似于explode函数的效果),然后使用get_json_object函数解析每个字段。
1)建表语句
DROP TABLE IF EXISTS dwd_action_log;
CREATE EXTERNAL TABLE dwd_action_log(
`area_code` STRING COMMENT '地区编码',
`brand` STRING COMMENT '手机品牌',
`channel` STRING COMMENT '渠道',
`is_new` STRING COMMENT '是否首次启动',
`model` STRING COMMENT '手机型号',
`mid_id` STRING COMMENT '设备id',
`os` STRING COMMENT '操作系统',
`user_id` STRING COMMENT '会员id',
`version_code` STRING COMMENT 'app版本号',
`during_time` BIGINT COMMENT '持续时间毫秒',
`page_item` STRING COMMENT '目标id ',
`page_item_type` STRING COMMENT '目标类型',
`last_page_id` STRING COMMENT '上页类型',
`page_id` STRING COMMENT '页面id ',
`source_type` STRING COMMENT '来源类型',
`action_id` STRING COMMENT '动作id',
`item` STRING COMMENT '目标id ',
`item_type` STRING COMMENT '目标类型',
`ts` BIGINT COMMENT '时间'
) COMMENT '动作日志表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dwd/dwd_action_log'
TBLPROPERTIES('parquet.compression'='lzo');
2)创建UDTF函数——设计思路
3)创建UDTF函数——编写代码
(1)创建一个maven工程:hivefunction
(2)创建包名:com.atguigu.hive.udtf
(3)引入如下依赖
<dependencies>
<!--添加hive依赖-->
<dependency>
<groupId>org.apache.hive</groupId>
<artifactId>hive-exec</artifactId>
<version>3.1.2</version>
</dependency>
</dependencies>
(4)编码
package com.atguigu.gmall.hive.udtf;
import org.apache.hadoop.hive.ql.exec.UDFArgumentException;
import org.apache.hadoop.hive.ql.metadata.HiveException;
import org.apache.hadoop.hive.ql.udf.generic.GenericUDTF;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorFactory;
import org.apache.hadoop.hive.serde2.objectinspector.PrimitiveObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.StructObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorFactory;
import org.json.JSONArray;
import java.util.ArrayList;
import java.util.List;
public class ExplodeJSONArray extends GenericUDTF {
@Override
public StructObjectInspector initialize(ObjectInspector[] argOIs) throws UDFArgumentException {
// 1 参数合法性检查
if (argOIs.length != 1) {
throw new UDFArgumentException("explode_json_array 只需要一个参数");
}
// 2 第一个参数必须为string
//判断参数是否为基础数据类型
if (argOIs[0].getCategory() != ObjectInspector.Category.PRIMITIVE) {
throw new UDFArgumentException("explode_json_array 只接受基础类型参数");
}
//将参数对象检查器强转为基础类型对象检查器
PrimitiveObjectInspector argumentOI = (PrimitiveObjectInspector) argOIs[0];
//判断参数是否为String类型
if (argumentOI.getPrimitiveCategory() != PrimitiveObjectInspector.PrimitiveCategory.STRING) {
throw new UDFArgumentException("explode_json_array 只接受string类型的参数");
}
// 3 定义返回值名称和类型
List<String> fieldNames = new ArrayList<String>();
List<ObjectInspector> fieldOIs = new ArrayList<ObjectInspector>();
fieldNames.add("items");
fieldOIs.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);
return ObjectInspectorFactory.getStandardStructObjectInspector(fieldNames, fieldOIs);
}
public void process(Object[] objects) throws HiveException {
// 1 获取传入的数据
String jsonArray = objects[0].toString();
// 2 将string转换为json数组
JSONArray actions = new JSONArray(jsonArray);
// 3 循环一次,取出数组中的一个json,并写出
for (int i = 0; i < actions.length(); i++) {
String[] result = new String[1];
result[0] = actions.getString(i);
forward(result);
}
}
public void close() throws HiveException {
}
}
4)创建函数
(1)打包
(2)将hivefunction-1.0-SNAPSHOT.jar上传到hadoop102的/opt/module,然后再将该jar包上传到HDFS的/user/hive/jars路径下
[atguigu@hadoop102 module]$ hadoop fs -mkdir -p /user/hive/jars
[atguigu@hadoop102 module]$ hadoop fs -put hivefunction-1.0-SNAPSHOT.jar /user/hive/jars
(3)创建永久函数与开发好的java class关联
create function explode_json_array as 'com.atguigu.gmall.hive.udtf.ExplodeJSONArray' using jar 'hdfs://hadoop102:8020/user/hive/jars/hivefunction-1.0-SNAPSHOT.jar';
(4)注意:如果修改了自定义函数重新生成jar包怎么处理?只需要替换HDFS路径上的旧jar包,然后重启Hive客户端即可。
5)数据导入
insert overwrite table dwd_action_log partition(dt='2020-06-14')
select
get_json_object(line,'$.common.ar'),
get_json_object(line,'$.common.ba'),
get_json_object(line,'$.common.ch'),
get_json_object(line,'$.common.is_new'),
get_json_object(line,'$.common.md'),
get_json_object(line,'$.common.mid'),
get_json_object(line,'$.common.os'),
get_json_object(line,'$.common.uid'),
get_json_object(line,'$.common.vc'),
get_json_object(line,'$.page.during_time'),
get_json_object(line,'$.page.item'),
get_json_object(line,'$.page.item_type'),
get_json_object(line,'$.page.last_page_id'),
get_json_object(line,'$.page.page_id'),
get_json_object(line,'$.page.source_type'),
get_json_object(action,'$.action_id'),
get_json_object(action,'$.item'),
get_json_object(action,'$.item_type'),
get_json_object(action,'$.ts')
from ods_log lateral view explode_json_array(get_json_object(line,'$.actions')) tmp as action
where dt='2020-06-14'
and get_json_object(line,'$.actions') is not null;
3)查看数据
select * from dwd_action_log where dt='2020-06-14' limit 2;
3.1.6 曝光日志表
曝光日志解析思路:曝光日志表中每行数据对应一个曝光记录,一个曝光记录应当包含公共信息、页面信息以及曝光信息。先将包含display字段的日志过滤出来,然后通过UDTF函数,将display数组“炸开”(类似于explode函数的效果),然后使用get_json_object函数解析每个字段。
1)建表语句
DROP TABLE IF EXISTS dwd_display_log;
CREATE EXTERNAL TABLE dwd_display_log(
`area_code` STRING COMMENT '地区编码',
`brand` STRING COMMENT '手机品牌',
`channel` STRING COMMENT '渠道',
`is_new` STRING COMMENT '是否首次启动',
`model` STRING COMMENT '手机型号',
`mid_id` STRING COMMENT '设备id',
`os` STRING COMMENT '操作系统',
`user_id` STRING COMMENT '会员id',
`version_code` STRING COMMENT 'app版本号',
`during_time` BIGINT COMMENT 'app版本号',
`page_item` STRING COMMENT '目标id ',
`page_item_type` STRING COMMENT '目标类型',
`last_page_id` STRING COMMENT '上页类型',
`page_id` STRING COMMENT '页面ID ',
`source_type` STRING COMMENT '来源类型',
`ts` BIGINT COMMENT 'app版本号',
`display_type` STRING COMMENT '曝光类型',
`item` STRING COMMENT '曝光对象id ',
`item_type` STRING COMMENT 'app版本号',
`order` BIGINT COMMENT '曝光顺序',
`pos_id` BIGINT COMMENT '曝光位置'
) COMMENT '曝光日志表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dwd/dwd_display_log'
TBLPROPERTIES('parquet.compression'='lzo');
2)数据导入
insert overwrite table dwd_display_log partition(dt='2020-06-14')
select
get_json_object(line,'$.common.ar'),
get_json_object(line,'$.common.ba'),
get_json_object(line,'$.common.ch'),
get_json_object(line,'$.common.is_new'),
get_json_object(line,'$.common.md'),
get_json_object(line,'$.common.mid'),
get_json_object(line,'$.common.os'),
get_json_object(line,'$.common.uid'),
get_json_object(line,'$.common.vc'),
get_json_object(line,'$.page.during_time'),
get_json_object(line,'$.page.item'),
get_json_object(line,'$.page.item_type'),
get_json_object(line,'$.page.last_page_id'),
get_json_object(line,'$.page.page_id'),
get_json_object(line,'$.page.source_type'),
get_json_object(line,'$.ts'),
get_json_object(display,'$.display_type'),
get_json_object(display,'$.item'),
get_json_object(display,'$.item_type'),
get_json_object(display,'$.order'),
get_json_object(display,'$.pos_id')
from ods_log lateral view explode_json_array(get_json_object(line,'$.displays')) tmp as display
where dt='2020-06-14'
and get_json_object(line,'$.displays') is not null;
3)查看数据
select * from dwd_display_log where dt='2020-06-14' limit 2;
3.1.7 错误日志表
错误日志解析思路:错误日志表中每行数据对应一个错误记录,为方便定位错误,一个错误记录应当包含与之对应的公共信息、页面信息、曝光信息、动作信息、启动信息以及错误信息。先将包含err字段的日志过滤出来,然后使用get_json_object函数解析所有字段。
1)建表语句
DROP TABLE IF EXISTS dwd_error_log;
CREATE EXTERNAL TABLE dwd_error_log(
`area_code` STRING COMMENT '地区编码',
`brand` STRING COMMENT '手机品牌',
`channel` STRING COMMENT '渠道',
`is_new` STRING COMMENT '是否首次启动',
`model` STRING COMMENT '手机型号',
`mid_id` STRING COMMENT '设备id',
`os` STRING COMMENT '操作系统',
`user_id` STRING COMMENT '会员id',
`version_code` STRING COMMENT 'app版本号',
`page_item` STRING COMMENT '目标id ',
`page_item_type` STRING COMMENT '目标类型',
`last_page_id` STRING COMMENT '上页类型',
`page_id` STRING COMMENT '页面ID ',
`source_type` STRING COMMENT '来源类型',
`entry` STRING COMMENT ' icon手机图标 notice 通知 install 安装后启动',
`loading_time` STRING COMMENT '启动加载时间',
`open_ad_id` STRING COMMENT '广告页ID ',
`open_ad_ms` STRING COMMENT '广告总共播放时间',
`open_ad_skip_ms` STRING COMMENT '用户跳过广告时点',
`actions` STRING COMMENT '动作',
`displays` STRING COMMENT '曝光',
`ts` STRING COMMENT '时间',
`error_code` STRING COMMENT '错误码',
`msg` STRING COMMENT '错误信息'
) COMMENT '错误日志表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dwd/dwd_error_log'
TBLPROPERTIES('parquet.compression'='lzo');
说明:此处为对动作数组和曝光数组做处理,如需分析错误与单个动作或曝光的关联,可先使用explode_json_array函数将数组“炸开”,再使用get_json_object函数获取具体字段。
4)数据导入
insert overwrite table dwd_error_log partition(dt='2020-06-14')
select
get_json_object(line,'$.common.ar'),
get_json_object(line,'$.common.ba'),
get_json_object(line,'$.common.ch'),
get_json_object(line,'$.common.is_new'),
get_json_object(line,'$.common.md'),
get_json_object(line,'$.common.mid'),
get_json_object(line,'$.common.os'),
get_json_object(line,'$.common.uid'),
get_json_object(line,'$.common.vc'),
get_json_object(line,'$.page.item'),
get_json_object(line,'$.page.item_type'),
get_json_object(line,'$.page.last_page_id'),
get_json_object(line,'$.page.page_id'),
get_json_object(line,'$.page.source_type'),
get_json_object(line,'$.start.entry'),
get_json_object(line,'$.start.loading_time'),
get_json_object(line,'$.start.open_ad_id'),
get_json_object(line,'$.start.open_ad_ms'),
get_json_object(line,'$.start.open_ad_skip_ms'),
get_json_object(line,'$.actions'),
get_json_object(line,'$.displays'),
get_json_object(line,'$.ts'),
get_json_object(line,'$.err.error_code'),
get_json_object(line,'$.err.msg')
from ods_log
where dt='2020-06-14'
and get_json_object(line,'$.err') is not null;
5)查看数据
select * from dwd_error_log where dt='2020-06-14' limit 2;
3.1.8 DWD层用户行为数据加载脚本
1)编写脚本
(1)在hadoop102的/home/atguigu/bin目录下创建脚本
[atguigu@hadoop102 bin]$ vim ods_to_dwd_log.sh
在脚本中编写如下内容
#!/bin/bash
APP=gmall
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$2" ] ;then
do_date=$2
else
do_date=`date -d "-1 day" +%F`
fi
dwd_start_log="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_start_log partition(dt='$do_date')
select
get_json_object(line,'$.common.ar'),
get_json_object(line,'$.common.ba'),
get_json_object(line,'$.common.ch'),
get_json_object(line,'$.common.is_new'),
get_json_object(line,'$.common.md'),
get_json_object(line,'$.common.mid'),
get_json_object(line,'$.common.os'),
get_json_object(line,'$.common.uid'),
get_json_object(line,'$.common.vc'),
get_json_object(line,'$.start.entry'),
get_json_object(line,'$.start.loading_time'),
get_json_object(line,'$.start.open_ad_id'),
get_json_object(line,'$.start.open_ad_ms'),
get_json_object(line,'$.start.open_ad_skip_ms'),
get_json_object(line,'$.ts')
from ${APP}.ods_log
where dt='$do_date'
and get_json_object(line,'$.start') is not null;"
dwd_page_log="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_page_log partition(dt='$do_date')
select
get_json_object(line,'$.common.ar'),
get_json_object(line,'$.common.ba'),
get_json_object(line,'$.common.ch'),
get_json_object(line,'$.common.is_new'),
get_json_object(line,'$.common.md'),
get_json_object(line,'$.common.mid'),
get_json_object(line,'$.common.os'),
get_json_object(line,'$.common.uid'),
get_json_object(line,'$.common.vc'),
get_json_object(line,'$.page.during_time'),
get_json_object(line,'$.page.item'),
get_json_object(line,'$.page.item_type'),
get_json_object(line,'$.page.last_page_id'),
get_json_object(line,'$.page.page_id'),
get_json_object(line,'$.page.source_type'),
get_json_object(line,'$.ts')
from ${APP}.ods_log
where dt='$do_date'
and get_json_object(line,'$.page') is not null;"
dwd_action_log="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_action_log partition(dt='$do_date')
select
get_json_object(line,'$.common.ar'),
get_json_object(line,'$.common.ba'),
get_json_object(line,'$.common.ch'),
get_json_object(line,'$.common.is_new'),
get_json_object(line,'$.common.md'),
get_json_object(line,'$.common.mid'),
get_json_object(line,'$.common.os'),
get_json_object(line,'$.common.uid'),
get_json_object(line,'$.common.vc'),
get_json_object(line,'$.page.during_time'),
get_json_object(line,'$.page.item'),
get_json_object(line,'$.page.item_type'),
get_json_object(line,'$.page.last_page_id'),
get_json_object(line,'$.page.page_id'),
get_json_object(line,'$.page.source_type'),
get_json_object(action,'$.action_id'),
get_json_object(action,'$.item'),
get_json_object(action,'$.item_type'),
get_json_object(action,'$.ts')
from ${APP}.ods_log lateral view ${APP}.explode_json_array(get_json_object(line,'$.actions')) tmp as action
where dt='$do_date'
and get_json_object(line,'$.actions') is not null;"
dwd_display_log="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_display_log partition(dt='$do_date')
select
get_json_object(line,'$.common.ar'),
get_json_object(line,'$.common.ba'),
get_json_object(line,'$.common.ch'),
get_json_object(line,'$.common.is_new'),
get_json_object(line,'$.common.md'),
get_json_object(line,'$.common.mid'),
get_json_object(line,'$.common.os'),
get_json_object(line,'$.common.uid'),
get_json_object(line,'$.common.vc'),
get_json_object(line,'$.page.during_time'),
get_json_object(line,'$.page.item'),
get_json_object(line,'$.page.item_type'),
get_json_object(line,'$.page.last_page_id'),
get_json_object(line,'$.page.page_id'),
get_json_object(line,'$.page.source_type'),
get_json_object(line,'$.ts'),
get_json_object(display,'$.display_type'),
get_json_object(display,'$.item'),
get_json_object(display,'$.item_type'),
get_json_object(display,'$.order'),
get_json_object(display,'$.pos_id')
from ${APP}.ods_log lateral view ${APP}.explode_json_array(get_json_object(line,'$.displays')) tmp as display
where dt='$do_date'
and get_json_object(line,'$.displays') is not null;"
dwd_error_log="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_error_log partition(dt='$do_date')
select
get_json_object(line,'$.common.ar'),
get_json_object(line,'$.common.ba'),
get_json_object(line,'$.common.ch'),
get_json_object(line,'$.common.is_new'),
get_json_object(line,'$.common.md'),
get_json_object(line,'$.common.mid'),
get_json_object(line,'$.common.os'),
get_json_object(line,'$.common.uid'),
get_json_object(line,'$.common.vc'),
get_json_object(line,'$.page.item'),
get_json_object(line,'$.page.item_type'),
get_json_object(line,'$.page.last_page_id'),
get_json_object(line,'$.page.page_id'),
get_json_object(line,'$.page.source_type'),
get_json_object(line,'$.start.entry'),
get_json_object(line,'$.start.loading_time'),
get_json_object(line,'$.start.open_ad_id'),
get_json_object(line,'$.start.open_ad_ms'),
get_json_object(line,'$.start.open_ad_skip_ms'),
get_json_object(line,'$.actions'),
get_json_object(line,'$.displays'),
get_json_object(line,'$.ts'),
get_json_object(line,'$.err.error_code'),
get_json_object(line,'$.err.msg')
from ${APP}.ods_log
where dt='$do_date'
and get_json_object(line,'$.err') is not null;"
case $1 in
dwd_start_log )
hive -e "$dwd_start_log"
;;
dwd_page_log )
hive -e "$dwd_page_log"
;;
dwd_action_log )
hive -e "$dwd_action_log"
;;
dwd_display_log )
hive -e "$dwd_display_log"
;;
dwd_error_log )
hive -e "$dwd_error_log"
;;
all )
hive -e "$dwd_start_log$dwd_page_log$dwd_action_log$dwd_display_log$dwd_error_log"
;;
esac
(2)增加脚本执行权限
[atguigu@hadoop102 bin]$ chmod 777 ods_to_dwd_log.sh
2)脚本使用
(1)执行脚本
[atguigu@hadoop102 module]$ ods_to_dwd_log.sh all 2020-06-14
(2)查询导入结果
3.2 DWD层(业务数据)
DWD层中事实表的创建,则需要根据各张表的特点进行不同的处理。
3.2.1 评价事实表(事务型事实表)
评价事实表只与时间、用户、商品三个维度有关,ODS层的商品评论表已经具有所有的关联字段,所以无需从其他表格中获得关联。
源自的表:
ods_comment_info 评论表
1)建表语句
DROP TABLE IF EXISTS dwd_comment_info;
CREATE EXTERNAL TABLE dwd_comment_info(
`id` STRING COMMENT '编号',
`user_id` STRING COMMENT '用户ID',
`sku_id` STRING COMMENT '商品sku',
`spu_id` STRING COMMENT '商品spu',
`order_id` STRING COMMENT '订单ID',
`appraise` STRING COMMENT '评价(好评、中评、差评、默认评价)',
`create_time` STRING COMMENT '评价时间'
) COMMENT '评价事实表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dwd/dwd_comment_info/'
TBLPROPERTIES ("parquet.compression"="lzo");
2)分区规划
3)数据装载
(1)首日装载
insert overwrite table dwd_comment_info partition (dt)
select
id,
user_id,
sku_id,
spu_id,
order_id,
appraise,
create_time,
date_format(create_time,'yyyy-MM-dd')
from ods_comment_info
where dt='2020-06-14';
(2)每日装载
insert overwrite table dwd_comment_info partition(dt='2020-06-15')
select
id,
user_id,
sku_id,
spu_id,
order_id,
appraise,
create_time
from ods_comment_info where dt='2020-06-15';
3.2.2 订单明细事实表(事务型事实表)
源自的表:
ods_order_detail 订单明细表
ods_order_info 订单表
ods_order_detail_activity 订单明细活动关联表
ods_order_detail_coupon 订单明细优惠券关联表
1)建表语句
DROP TABLE IF EXISTS dwd_order_detail;
CREATE EXTERNAL TABLE dwd_order_detail (
`id` STRING COMMENT '订单编号',
`order_id` STRING COMMENT '订单号',
`user_id` STRING COMMENT '用户id',
`sku_id` STRING COMMENT 'sku商品id',
`province_id` STRING COMMENT '省份ID',
`activity_id` STRING COMMENT '活动ID',
`activity_rule_id` STRING COMMENT '活动规则ID',
`coupon_id` STRING COMMENT '优惠券ID',
`create_time` STRING COMMENT '创建时间',
`source_type` STRING COMMENT '来源类型',
`source_id` STRING COMMENT '来源编号',
`sku_num` BIGINT COMMENT '商品数量',
`original_amount` DECIMAL(16,2) COMMENT '原始价格',
`split_activity_amount` DECIMAL(16,2) COMMENT '活动优惠分摊',
`split_coupon_amount` DECIMAL(16,2) COMMENT '优惠券优惠分摊',
`split_final_amount` DECIMAL(16,2) COMMENT '最终价格分摊'
) COMMENT '订单明细事实表表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dwd/dwd_order_detail/'
TBLPROPERTIES ("parquet.compression"="lzo");
2)分区规划
3)数据装载
(1)首日装载
insert overwrite table dwd_order_detail partition(dt)
select
od.id,
od.order_id,
oi.user_id,
od.sku_id,
oi.province_id,
oda.activity_id,
oda.activity_rule_id,
odc.coupon_id,
od.create_time,
od.source_type,
od.source_id,
od.sku_num,
od.order_price*od.sku_num,
od.split_activity_amount,
od.split_coupon_amount,
od.split_final_amount,
date_format(create_time,'yyyy-MM-dd')
from
(
select
*
from ods_order_detail
where dt='2020-06-14'
)od
left join
(
select
id,
user_id,
province_id
from ods_order_info
where dt='2020-06-14'
)oi
on od.order_id=oi.id
left join
(
select
order_detail_id,
activity_id,
activity_rule_id
from ods_order_detail_activity
where dt='2020-06-14'
)oda
on od.id=oda.order_detail_id
left join
(
select
order_detail_id,
coupon_id
from ods_order_detail_coupon
where dt='2020-06-14'
)odc
on od.id=odc.order_detail_id;
(2)每日装载
insert overwrite table dwd_order_detail partition(dt='2020-06-15')
select
od.id,
od.order_id,
oi.user_id,
od.sku_id,
oi.province_id,
oda.activity_id,
oda.activity_rule_id,
odc.coupon_id,
od.create_time,
od.source_type,
od.source_id,
od.sku_num,
od.order_price*od.sku_num,
od.split_activity_amount,
od.split_coupon_amount,
od.split_final_amount
from
(
select
*
from ods_order_detail
where dt='2020-06-15'
)od
left join
(
select
id,
user_id,
province_id
from ods_order_info
where dt='2020-06-15'
)oi
on od.order_id=oi.id
left join
(
select
order_detail_id,
activity_id,
activity_rule_id
from ods_order_detail_activity
where dt='2020-06-15'
)oda
on od.id=oda.order_detail_id
left join
(
select
order_detail_id,
coupon_id
from ods_order_detail_coupon
where dt='2020-06-15'
)odc
on od.id=odc.order_detail_id;
3.2.3 退单事实表(事务型事实表)
退单事实表与时间、地区、用户、商品三个维度有关
源自的表:
ods_order_refund_info 退单表
ods_order_info 订单表
1)建表语句
DROP TABLE IF EXISTS dwd_order_refund_info;
CREATE EXTERNAL TABLE dwd_order_refund_info(
`id` STRING COMMENT '编号',
`user_id` STRING COMMENT '用户ID',
`order_id` STRING COMMENT '订单ID',
`sku_id` STRING COMMENT '商品ID',
`province_id` STRING COMMENT '地区ID',
`refund_type` STRING COMMENT '退单类型',
`refund_num` BIGINT COMMENT '退单件数',
`refund_amount` DECIMAL(16,2) COMMENT '退单金额',
`refund_reason_type` STRING COMMENT '退单原因类型',
`create_time` STRING COMMENT '退单时间'
) COMMENT '退单事实表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dwd/dwd_order_refund_info/'
TBLPROPERTIES ("parquet.compression"="lzo");
2)分区规划
3)数据装载
(1)首日装载
insert overwrite table dwd_order_refund_info partition(dt)
select
ri.id,
ri.user_id,
ri.order_id,
ri.sku_id,
oi.province_id,
ri.refund_type,
ri.refund_num,
ri.refund_amount,
ri.refund_reason_type,
ri.create_time,
date_format(ri.create_time,'yyyy-MM-dd')
from
(
select * from ods_order_refund_info where dt='2020-06-14'
)ri
left join
(
select id,province_id from ods_order_info where dt='2020-06-14'
)oi
on ri.order_id=oi.id;
(2)每日装载
insert overwrite table dwd_order_refund_info partition(dt='2020-06-15')
select
ri.id,
ri.user_id,
ri.order_id,
ri.sku_id,
oi.province_id,
ri.refund_type,
ri.refund_num,
ri.refund_amount,
ri.refund_reason_type,
ri.create_time
from
(
select * from ods_order_refund_info where dt='2020-06-15'
)ri
left join
(
select id,province_id from ods_order_info where dt='2020-06-15'
)oi
on ri.order_id=oi.id;
3)查询加载结果
3.2.4 加购事实表(周期型快照事实表,每日快照)
由于购物车中的数据经常会发生变化,所以不适合采用每日增量同步策略导入数据。我们采用的策略是每天做一次快照,进行全量数据导入。这样做的劣势是存储的数据量比较大。由于周期型快照事实表存储的数据比较注重时效性,存储时间过久远的数据存在的意义不大吗,所以可以定时删除以前的数据来释放内存。
源自的表:
ods_cart_info 购物车表
1)建表语句
DROP TABLE IF EXISTS dwd_cart_info;
CREATE EXTERNAL TABLE dwd_cart_info(
`id` STRING COMMENT '编号',
`user_id` STRING COMMENT '用户ID',
`sku_id` STRING COMMENT '商品ID',
`source_type` STRING COMMENT '来源类型',
`source_id` STRING COMMENT '来源编号',
`cart_price` DECIMAL(16,2) COMMENT '加入购物车时的价格',
`is_ordered` STRING COMMENT '是否已下单',
`create_time` STRING COMMENT '创建时间',
`operate_time` STRING COMMENT '修改时间',
`order_time` STRING COMMENT '下单时间',
`sku_num` BIGINT COMMENT '加购数量'
) COMMENT '加购事实表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dwd/dwd_cart_info/'
TBLPROPERTIES ("parquet.compression"="lzo");
2)分区规划
3)数据装载
(1)首日装载
insert overwrite table dwd_cart_info partition(dt='2020-06-14')
select
id,
user_id,
sku_id,
source_type,
source_id,
cart_price,
is_ordered,
create_time,
operate_time,
order_time,
sku_num
from ods_cart_info
where dt='2020-06-14';
(2)每日装载
insert overwrite table dwd_cart_info partition(dt='2020-06-15')
select
id,
user_id,
sku_id,
source_type,
source_id,
cart_price,
is_ordered,
create_time,
operate_time,
order_time,
sku_num
from ods_cart_info
where dt='2020-06-15';
3.2.5 收藏事实表(周期型快照事实表,每日快照)
收藏事实表采用的同步策略与架构事实表相同
源自的表:
ods_favor_info 收藏表
1)建表语句
DROP TABLE IF EXISTS dwd_favor_info;
CREATE EXTERNAL TABLE dwd_favor_info(
`id` STRING COMMENT '编号',
`user_id` STRING COMMENT '用户id',
`sku_id` STRING COMMENT 'skuid',
`spu_id` STRING COMMENT 'spuid',
`is_cancel` STRING COMMENT '是否取消',
`create_time` STRING COMMENT '收藏时间',
`cancel_time` STRING COMMENT '取消时间'
) COMMENT '收藏事实表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dwd/dwd_favor_info/'
TBLPROPERTIES ("parquet.compression"="lzo");
2)分区规划
3)数据装载
(1)首日装载
insert overwrite table dwd_favor_info partition(dt='2020-06-14')
select
id,
user_id,
sku_id,
spu_id,
is_cancel,
create_time,
cancel_time
from ods_favor_info
where dt='2020-06-14';
(2)每日装载
insert overwrite table dwd_favor_info partition(dt='2020-06-15')
select
id,
user_id,
sku_id,
spu_id,
is_cancel,
create_time,
cancel_time
from ods_favor_info
where dt='2020-06-15';
3.2.6 优惠券领用事实表(累积型快照事实表)
优惠券的使用有一定的生命周期:领取优惠券->使用优惠券下单->优惠券参与支付。所以优惠券领用事实表符合累积型快照事实表的特征,即将优惠券的领用、下单使用、支付使用三个时间节点按照快照进行记录。
源自的表:
ods_coupon_use 优惠券信息表
1)建表语句
DROP TABLE IF EXISTS dwd_coupon_use;
CREATE EXTERNAL TABLE dwd_coupon_use(
`id` STRING COMMENT '编号',
`coupon_id` STRING COMMENT '优惠券ID',
`user_id` STRING COMMENT 'userid',
`order_id` STRING COMMENT '订单id',
`coupon_status` STRING COMMENT '优惠券状态',
`get_time` STRING COMMENT '领取时间',
`using_time` STRING COMMENT '使用时间(下单)',
`used_time` STRING COMMENT '使用时间(支付)',
`expire_time` STRING COMMENT '过期时间'
) COMMENT '优惠券领用事实表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dwd/dwd_coupon_use/'
TBLPROPERTIES ("parquet.compression"="lzo");
2)分区规划
3)数据装载
(1)首日装载
insert overwrite table dwd_coupon_use partition(dt)
select
id,
coupon_id,
user_id,
order_id,
coupon_status,
get_time,
using_time,
used_time,
expire_time,
coalesce(date_format(used_time,'yyyy-MM-dd'),date_format(expire_time,'yyyy-MM-dd'),'9999-99-99')
from ods_coupon_use
where dt='2020-06-14';
(2)每日装载
a.装载逻辑
b.转载语句
insert overwrite table dwd_coupon_use partition(dt)
select
-- 如果没有新数据,就用旧数据,否则就用新数据
nvl(new.id,old.id),
nvl(new.coupon_id,old.coupon_id),
nvl(new.user_id,old.user_id),
nvl(new.order_id,old.order_id),
nvl(new.coupon_status,old.coupon_status),
nvl(new.get_time,old.get_time),
nvl(new.using_time,old.using_time),
nvl(new.used_time,old.used_time),
nvl(new.expire_time,old.expire_time),
coalesce(date_format(nvl(new.used_time,old.used_time),'yyyy-MM-dd'),date_format(nvl(new.expire_time,old.expire_time),'yyyy-MM-dd'),'9999-99-99')
from
(
select
id,
coupon_id,
user_id,
order_id,
coupon_status,
get_time,
using_time,
used_time,
expire_time
from dwd_coupon_use
where dt='9999-99-99'
)old
full outer join
(
select
id,
coupon_id,
user_id,
order_id,
coupon_status,
get_time,
using_time,
used_time,
expire_time
from ods_coupon_use
where dt='2020-06-15'
)new
on old.id=new.id;
3.2.7 支付事实表(累积型快照事实表)
源自的表:
ods_payment_info 支付表
ods_order_info 订单表
1)建表语句
DROP TABLE IF EXISTS dwd_payment_info;
CREATE EXTERNAL TABLE dwd_payment_info (
`id` STRING COMMENT '编号',
`order_id` STRING COMMENT '订单编号',
`user_id` STRING COMMENT '用户编号',
`province_id` STRING COMMENT '地区ID',
`trade_no` STRING COMMENT '交易编号',
`out_trade_no` STRING COMMENT '对外交易编号',
`payment_type` STRING COMMENT '支付类型',
`payment_amount` DECIMAL(16,2) COMMENT '支付金额',
`payment_status` STRING COMMENT '支付状态',
`create_time` STRING COMMENT '创建时间',-- 调用第三方支付接口的时间
`callback_time` STRING COMMENT '完成时间'-- 支付完成时间,即支付成功回调时间
) COMMENT '支付事实表表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dwd/dwd_payment_info/'
TBLPROPERTIES ("parquet.compression"="lzo");
2)分区规划
3)数据装载
(1)首日装载
insert overwrite table dwd_payment_info partition(dt)
select
pi.id,
pi.order_id,
pi.user_id,
oi.province_id,
pi.trade_no,
pi.out_trade_no,
pi.payment_type,
pi.payment_amount,
pi.payment_status,
pi.create_time,
pi.callback_time,
nvl(date_format(pi.callback_time,'yyyy-MM-dd'),'9999-99-99')
from
(
select * from ods_payment_info where dt='2020-06-14'
)pi
left join
(
select id,province_id from ods_order_info where dt='2020-06-14'
)oi
on pi.order_id=oi.id;
(2)每日装载
insert overwrite table dwd_payment_info partition(dt)
select
nvl(new.id,old.id),
nvl(new.order_id,old.order_id),
nvl(new.user_id,old.user_id),
nvl(new.province_id,old.province_id),
nvl(new.trade_no,old.trade_no),
nvl(new.out_trade_no,old.out_trade_no),
nvl(new.payment_type,old.payment_type),
nvl(new.payment_amount,old.payment_amount),
nvl(new.payment_status,old.payment_status),
nvl(new.create_time,old.create_time),
nvl(new.callback_time,old.callback_time),
nvl(date_format(nvl(new.callback_time,old.callback_time),'yyyy-MM-dd'),'9999-99-99')
from
(
select id,
order_id,
user_id,
province_id,
trade_no,
out_trade_no,
payment_type,
payment_amount,
payment_status,
create_time,
callback_time
from dwd_payment_info
where dt = '9999-99-99'
)old
full outer join
(
select
pi.id,
pi.out_trade_no,
pi.order_id,
pi.user_id,
oi.province_id,
pi.payment_type,
pi.trade_no,
pi.payment_amount,
pi.payment_status,
pi.create_time,
pi.callback_time
from
(
select * from ods_payment_info where dt='2020-06-15'
)pi
left join
(
select id,province_id from ods_order_info where dt='2020-06-15'
)oi
on pi.order_id=oi.id
)new
on old.id=new.id;
3.2.8 退款事实表(累积型快照事实表)
1)建表语句
DROP TABLE IF EXISTS dwd_refund_payment;
CREATE EXTERNAL TABLE dwd_refund_payment (
`id` STRING COMMENT '编号',
`user_id` STRING COMMENT '用户ID',
`order_id` STRING COMMENT '订单编号',
`sku_id` STRING COMMENT 'SKU编号',
`province_id` STRING COMMENT '地区ID',
`trade_no` STRING COMMENT '交易编号',
`out_trade_no` STRING COMMENT '对外交易编号',
`payment_type` STRING COMMENT '支付类型',
`refund_amount` DECIMAL(16,2) COMMENT '退款金额',
`refund_status` STRING COMMENT '退款状态',
`create_time` STRING COMMENT '创建时间',--调用第三方支付接口的时间
`callback_time` STRING COMMENT '回调时间'--支付接口回调时间,即支付成功时间
) COMMENT '退款事实表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dwd/dwd_refund_payment/'
TBLPROPERTIES ("parquet.compression"="lzo");
2)分区规划
3)数据装载
(1)首日装载
insert overwrite table dwd_refund_payment partition(dt)
select
rp.id,
user_id,
order_id,
sku_id,
province_id,
trade_no,
out_trade_no,
payment_type,
refund_amount,
refund_status,
create_time,
callback_time,
nvl(date_format(callback_time,'yyyy-MM-dd'),'9999-99-99')
from
(
select
id,
out_trade_no,
order_id,
sku_id,
payment_type,
trade_no,
refund_amount,
refund_status,
create_time,
callback_time
from ods_refund_payment
where dt='2020-06-14'
)rp
left join
(
select
id,
user_id,
province_id
from ods_order_info
where dt='2020-06-14'
)oi
on rp.order_id=oi.id;
(2)每日装载
insert overwrite table dwd_refund_payment partition(dt)
select
nvl(new.id,old.id),
nvl(new.user_id,old.user_id),
nvl(new.order_id,old.order_id),
nvl(new.sku_id,old.sku_id),
nvl(new.province_id,old.province_id),
nvl(new.trade_no,old.trade_no),
nvl(new.out_trade_no,old.out_trade_no),
nvl(new.payment_type,old.payment_type),
nvl(new.refund_amount,old.refund_amount),
nvl(new.refund_status,old.refund_status),
nvl(new.create_time,old.create_time),
nvl(new.callback_time,old.callback_time),
nvl(date_format(nvl(new.callback_time,old.callback_time),'yyyy-MM-dd'),'9999-99-99')
from
(
select
id,
user_id,
order_id,
sku_id,
province_id,
trade_no,
out_trade_no,
payment_type,
refund_amount,
refund_status,
create_time,
callback_time
from dwd_refund_payment
where dt='9999-99-99'
)old
full outer join
(
select
rp.id,
user_id,
order_id,
sku_id,
province_id,
trade_no,
out_trade_no,
payment_type,
refund_amount,
refund_status,
create_time,
callback_time
from
(
select
id,
out_trade_no,
order_id,
sku_id,
payment_type,
trade_no,
refund_amount,
refund_status,
create_time,
callback_time
from ods_refund_payment
where dt='2020-06-15'
)rp
left join
(
select
id,
user_id,
province_id
from ods_order_info
where dt='2020-06-15'
)oi
on rp.order_id=oi.id
)new
on old.id=new.id;
3)查询加载结果
3.2.9 订单事实表(累积型快照事实表)
源自的表:
ods_order_info 订单表
ods_order_status_log 订单状态日志表
数据导入过程中涉及函数
(1)concat()函数。用于连接字符串,在;连接字符串时,只要其中一个字符串时NULL,结果就返回NULL。
(2)concat_ws()函数。同样用于连接字符串,在连接字符串时,只要有一个字符串不是NULL,结果就不会返回NULL。同时需要指定分隔符。
(3)str_to_map()函数。
- 语法描述
STR_TO_MAP(VARCHAR text, VARCHAR listDelimiter, VARCHAR keyValueDelimiter)
- 功能描述
使用listDelimiter将text分隔成K-V对,然后使用keyValueDelimiter分隔每个K-V对,组装成MAP返回。默认listDelimiter为( ,),keyValueDelimiter为(=)。
- 案例
str_to_map('1001=2020-06-14,1002=2020-06-14', ',' , '=')
- 输出
{"1001":"2020-06-14","1002":"2020-06-14"}
1)建表语句
订单事实表与时间、用户、地区、活动四个维度有关。
订单从创建到完成具有一定的生命周期,这个生命周期为创建->支付->取消->完成->退款->退款完成,
由于ODS层的订单表只有创建时间和操作时间两个状态,不能表达所有时间节点,所以需要关联订单状态表。
DROP TABLE IF EXISTS dwd_order_info;
CREATE EXTERNAL TABLE dwd_order_info(
`id` STRING COMMENT '编号',
`order_status` STRING COMMENT '订单状态',
`user_id` STRING COMMENT '用户ID',
`province_id` STRING COMMENT '地区ID',
`payment_way` STRING COMMENT '支付方式',
`delivery_address` STRING COMMENT '邮寄地址',
`out_trade_no` STRING COMMENT '对外交易编号',
`tracking_no` STRING COMMENT '物流单号',
`create_time` STRING COMMENT '创建时间(未支付状态)',
`payment_time` STRING COMMENT '支付时间(已支付状态)',
`cancel_time` STRING COMMENT '取消时间(已取消状态)',
`finish_time` STRING COMMENT '完成时间(已完成状态)',
`refund_time` STRING COMMENT '退款时间(退款中状态)',
`refund_finish_time` STRING COMMENT '退款完成时间(退款完成状态)',
`expire_time` STRING COMMENT '过期时间',
`feight_fee` DECIMAL(16,2) COMMENT '运费',
`feight_fee_reduce` DECIMAL(16,2) COMMENT '运费减免',
`activity_reduce_amount` DECIMAL(16,2) COMMENT '活动减免',
`coupon_reduce_amount` DECIMAL(16,2) COMMENT '优惠券减免',
`original_amount` DECIMAL(16,2) COMMENT '订单原始价格',
`final_amount` DECIMAL(16,2) COMMENT '订单最终价格'
) COMMENT '订单事实表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dwd/dwd_order_info/'
TBLPROPERTIES ("parquet.compression"="lzo");
2)分区规划
3)数据装载
(1)首日装载
将订单状态表中的多条数据转换为一行map
str_to_map(concat_ws(',',collect_set(concat(order_status,'=',operate_time))),',','=') ts
订单编号
订单编号 | 订单状态 | 创建时间 |
---|---|---|
3210 | 1001=2020-03-10 | 00:00:00.0 |
3210 | 1002=2020-03-10 | 00:00:00.0 |
3210 | 1005=2020-03-10 | 00:00:00.0 |
转为:
{"1001":"2020-03-10 00:00:00.0","1002":"2020-03-10 00:00:00.0","1005":"2020-03-10 00:00:00.0"}
insert overwrite table dwd_order_info partition(dt)
select
oi.id,
oi.order_status,
oi.user_id,
oi.province_id,
oi.payment_way,
oi.delivery_address,
oi.out_trade_no,
oi.tracking_no,
oi.create_time,
times.ts['1002'] payment_time,
times.ts['1003'] cancel_time,
times.ts['1004'] finish_time,
times.ts['1005'] refund_time,
times.ts['1006'] refund_finish_time,
oi.expire_time,
feight_fee,
feight_fee_reduce,
activity_reduce_amount,
coupon_reduce_amount,
original_amount,
final_amount,
case
when times.ts['1003'] is not null then date_format(times.ts['1003'],'yyyy-MM-dd')
when times.ts['1004'] is not null and date_add(date_format(times.ts['1004'],'yyyy-MM-dd'),7)<='2020-06-14' and times.ts['1005'] is null then date_add(date_format(times.ts['1004'],'yyyy-MM-dd'),7)
when times.ts['1006'] is not null then date_format(times.ts['1006'],'yyyy-MM-dd')
when oi.expire_time is not null then date_format(oi.expire_time,'yyyy-MM-dd')
else '9999-99-99'
end
from
(
select
*
from ods_order_info
where dt='2020-06-14'
)oi
left join
(
select
order_id,
str_to_map(concat_ws(',',collect_set(concat(order_status,'=',operate_time))),',','=') ts
from ods_order_status_log
where dt='2020-06-14'
group by order_id
)times
on oi.id=times.order_id;
(2)每日装载
insert overwrite table dwd_order_info partition(dt)
select
nvl(new.id,old.id),
nvl(new.order_status,old.order_status),
nvl(new.user_id,old.user_id),
nvl(new.province_id,old.province_id),
nvl(new.payment_way,old.payment_way),
nvl(new.delivery_address,old.delivery_address),
nvl(new.out_trade_no,old.out_trade_no),
nvl(new.tracking_no,old.tracking_no),
nvl(new.create_time,old.create_time),
nvl(new.payment_time,old.payment_time),
nvl(new.cancel_time,old.cancel_time),
nvl(new.finish_time,old.finish_time),
nvl(new.refund_time,old.refund_time),
nvl(new.refund_finish_time,old.refund_finish_time),
nvl(new.expire_time,old.expire_time),
nvl(new.feight_fee,old.feight_fee),
nvl(new.feight_fee_reduce,old.feight_fee_reduce),
nvl(new.activity_reduce_amount,old.activity_reduce_amount),
nvl(new.coupon_reduce_amount,old.coupon_reduce_amount),
nvl(new.original_amount,old.original_amount),
nvl(new.final_amount,old.final_amount),
case
when new.cancel_time is not null then date_format(new.cancel_time,'yyyy-MM-dd')
when new.finish_time is not null and date_add(date_format(new.finish_time,'yyyy-MM-dd'),7)='2020-06-15' and new.refund_time is null then '2020-06-15'
when new.refund_finish_time is not null then date_format(new.refund_finish_time,'yyyy-MM-dd')
when new.expire_time is not null then date_format(new.expire_time,'yyyy-MM-dd')
else '9999-99-99'
end
from
(
select
id,
order_status,
user_id,
province_id,
payment_way,
delivery_address,
out_trade_no,
tracking_no,
create_time,
payment_time,
cancel_time,
finish_time,
refund_time,
refund_finish_time,
expire_time,
feight_fee,
feight_fee_reduce,
activity_reduce_amount,
coupon_reduce_amount,
original_amount,
final_amount
from dwd_order_info
where dt='9999-99-99'
)old
full outer join
(
select
oi.id,
oi.order_status,
oi.user_id,
oi.province_id,
oi.payment_way,
oi.delivery_address,
oi.out_trade_no,
oi.tracking_no,
oi.create_time,
times.ts['1002'] payment_time,
times.ts['1003'] cancel_time,
times.ts['1004'] finish_time,
times.ts['1005'] refund_time,
times.ts['1006'] refund_finish_time,
oi.expire_time,
feight_fee,
feight_fee_reduce,
activity_reduce_amount,
coupon_reduce_amount,
original_amount,
final_amount
from
(
select
*
from ods_order_info
where dt='2020-06-15'
)oi
left join
(
select
order_id,
str_to_map(concat_ws(',',collect_set(concat(order_status,'=',operate_time))),',','=') ts
from ods_order_status_log
where dt='2020-06-15'
group by order_id
)times
on oi.id=times.order_id
)new
on old.id=new.id;
3.2.10 DWD层业务数据首日装载脚本
1)编写脚本
(1)在/home/atguigu/bin目录下创建脚本ods_to_dwd_db_init.sh
[atguigu@hadoop102 bin]$ vim ods_to_dwd_db_init.sh
在脚本中填写如下内容
#!/bin/bash
APP=gmall
if [ -n "$2" ] ;then
do_date=$2
else
echo "请传入日期参数"
exit
fi
dwd_order_info="
set hive.exec.dynamic.partition.mode=nonstrict;
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_order_info partition(dt)
select
oi.id,
oi.order_status,
oi.user_id,
oi.province_id,
oi.payment_way,
oi.delivery_address,
oi.out_trade_no,
oi.tracking_no,
oi.create_time,
times.ts['1002'] payment_time,
times.ts['1003'] cancel_time,
times.ts['1004'] finish_time,
times.ts['1005'] refund_time,
times.ts['1006'] refund_finish_time,
oi.expire_time,
feight_fee,
feight_fee_reduce,
activity_reduce_amount,
coupon_reduce_amount,
original_amount,
final_amount,
case
when times.ts['1003'] is not null then date_format(times.ts['1003'],'yyyy-MM-dd')
when times.ts['1004'] is not null and date_add(date_format(times.ts['1004'],'yyyy-MM-dd'),7)<='$do_date' and times.ts['1005'] is null then date_add(date_format(times.ts['1004'],'yyyy-MM-dd'),7)
when times.ts['1006'] is not null then date_format(times.ts['1006'],'yyyy-MM-dd')
when oi.expire_time is not null then date_format(oi.expire_time,'yyyy-MM-dd')
else '9999-99-99'
end
from
(
select
*
from ${APP}.ods_order_info
where dt='$do_date'
)oi
left join
(
select
order_id,
str_to_map(concat_ws(',',collect_set(concat(order_status,'=',operate_time))),',','=') ts
from ${APP}.ods_order_status_log
where dt='$do_date'
group by order_id
)times
on oi.id=times.order_id;"
dwd_order_detail="
set hive.exec.dynamic.partition.mode=nonstrict;
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_order_detail partition(dt)
select
od.id,
od.order_id,
oi.user_id,
od.sku_id,
oi.province_id,
oda.activity_id,
oda.activity_rule_id,
odc.coupon_id,
od.create_time,
od.source_type,
od.source_id,
od.sku_num,
od.order_price*od.sku_num,
od.split_activity_amount,
od.split_coupon_amount,
od.split_final_amount,
date_format(create_time,'yyyy-MM-dd')
from
(
select
*
from ${APP}.ods_order_detail
where dt='$do_date'
)od
left join
(
select
id,
user_id,
province_id
from ${APP}.ods_order_info
where dt='$do_date'
)oi
on od.order_id=oi.id
left join
(
select
order_detail_id,
activity_id,
activity_rule_id
from ${APP}.ods_order_detail_activity
where dt='$do_date'
)oda
on od.id=oda.order_detail_id
left join
(
select
order_detail_id,
coupon_id
from ${APP}.ods_order_detail_coupon
where dt='$do_date'
)odc
on od.id=odc.order_detail_id;"
dwd_payment_info="
set hive.exec.dynamic.partition.mode=nonstrict;
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_payment_info partition(dt)
select
pi.id,
pi.order_id,
pi.user_id,
oi.province_id,
pi.trade_no,
pi.out_trade_no,
pi.payment_type,
pi.payment_amount,
pi.payment_status,
pi.create_time,
pi.callback_time,
nvl(date_format(pi.callback_time,'yyyy-MM-dd'),'9999-99-99')
from
(
select * from ${APP}.ods_payment_info where dt='$do_date'
)pi
left join
(
select id,province_id from ${APP}.ods_order_info where dt='$do_date'
)oi
on pi.order_id=oi.id;"
dwd_cart_info="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_cart_info partition(dt='$do_date')
select
id,
user_id,
sku_id,
source_type,
source_id,
cart_price,
is_ordered,
create_time,
operate_time,
order_time,
sku_num
from ${APP}.ods_cart_info
where dt='$do_date';"
dwd_comment_info="
set hive.exec.dynamic.partition.mode=nonstrict;
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_comment_info partition(dt)
select
id,
user_id,
sku_id,
spu_id,
order_id,
appraise,
create_time,
date_format(create_time,'yyyy-MM-dd')
from ${APP}.ods_comment_info
where dt='$do_date';
"
dwd_favor_info="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_favor_info partition(dt='$do_date')
select
id,
user_id,
sku_id,
spu_id,
is_cancel,
create_time,
cancel_time
from ${APP}.ods_favor_info
where dt='$do_date';"
dwd_coupon_use="
set hive.exec.dynamic.partition.mode=nonstrict;
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_coupon_use partition(dt)
select
id,
coupon_id,
user_id,
order_id,
coupon_status,
get_time,
using_time,
used_time,
expire_time,
coalesce(date_format(used_time,'yyyy-MM-dd'),date_format(expire_time,'yyyy-MM-dd'),'9999-99-99')
from ${APP}.ods_coupon_use
where dt='$do_date';"
dwd_order_refund_info="
set hive.exec.dynamic.partition.mode=nonstrict;
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_order_refund_info partition(dt)
select
ri.id,
ri.user_id,
ri.order_id,
ri.sku_id,
oi.province_id,
ri.refund_type,
ri.refund_num,
ri.refund_amount,
ri.refund_reason_type,
ri.create_time,
date_format(ri.create_time,'yyyy-MM-dd')
from
(
select * from ${APP}.ods_order_refund_info where dt='$do_date'
)ri
left join
(
select id,province_id from ${APP}.ods_order_info where dt='$do_date'
)oi
on ri.order_id=oi.id;"
dwd_refund_payment="
set hive.exec.dynamic.partition.mode=nonstrict;
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_refund_payment partition(dt)
select
rp.id,
user_id,
order_id,
sku_id,
province_id,
trade_no,
out_trade_no,
payment_type,
refund_amount,
refund_status,
create_time,
callback_time,
nvl(date_format(callback_time,'yyyy-MM-dd'),'9999-99-99')
from
(
select
id,
out_trade_no,
order_id,
sku_id,
payment_type,
trade_no,
refund_amount,
refund_status,
create_time,
callback_time
from ${APP}.ods_refund_payment
where dt='$do_date'
)rp
left join
(
select
id,
user_id,
province_id
from ${APP}.ods_order_info
where dt='$do_date'
)oi
on rp.order_id=oi.id;"
case $1 in
dwd_order_info )
hive -e "$dwd_order_info"
;;
dwd_order_detail )
hive -e "$dwd_order_detail"
;;
dwd_payment_info )
hive -e "$dwd_payment_info"
;;
dwd_cart_info )
hive -e "$dwd_cart_info"
;;
dwd_comment_info )
hive -e "$dwd_comment_info"
;;
dwd_favor_info )
hive -e "$dwd_favor_info"
;;
dwd_coupon_use )
hive -e "$dwd_coupon_use"
;;
dwd_order_refund_info )
hive -e "$dwd_order_refund_info"
;;
dwd_refund_payment )
hive -e "$dwd_refund_payment"
;;
all )
hive -e "$dwd_order_info$dwd_order_detail$dwd_payment_info$dwd_cart_info$dwd_comment_info$dwd_favor_info$dwd_coupon_use$dwd_order_refund_info$dwd_refund_payment"
;;
esac
(2)增加执行权限
[atguigu@hadoop102 bin]$ chmod +x ods_to_dwd_db_init.sh
2)脚本使用
(1)执行脚本
[atguigu@hadoop102 bin]$ ods_to_dwd_db_init.sh all 2020-06-14
(2)查看数据是否导入成功
3.2.11 DWD层业务数据每日装载脚本
1)编写脚本
(1)在/home/atguigu/bin目录下创建脚本ods_to_dwd_db.sh
[atguigu@hadoop102 bin]$ vim ods_to_dwd_db.sh
在脚本中填写如下内容
#!/bin/bash
APP=gmall
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$2" ] ;then
do_date=$2
else
do_date=`date -d "-1 day" +%F`
fi
# 假设某累积型快照事实表,某天所有的业务记录全部完成,则会导致9999-99-99分区的数据未被覆盖,从而导致数据重复,该函数根据9999-99-99分区的数据的末次修改时间判断其是否被覆盖了,如果未被覆盖,就手动清理
clear_data(){
current_date=`date +%F`
current_date_timestamp=`date -d "$current_date" +%s`
last_modified_date=`hadoop fs -ls /warehouse/gmall/dwd/$1 | grep '9999-99-99' | awk '{print $6}'`
last_modified_date_timestamp=`date -d "$last_modified_date" +%s`
if [[ $last_modified_date_timestamp -lt $current_date_timestamp ]]; then
echo "clear table $1 partition(dt=9999-99-99)"
hadoop fs -rm -r -f /warehouse/gmall/dwd/$1/dt=9999-99-99/*
fi
}
dwd_order_info="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
set hive.exec.dynamic.partition.mode=nonstrict;
insert overwrite table ${APP}.dwd_order_info partition(dt)
select
nvl(new.id,old.id),
nvl(new.order_status,old.order_status),
nvl(new.user_id,old.user_id),
nvl(new.province_id,old.province_id),
nvl(new.payment_way,old.payment_way),
nvl(new.delivery_address,old.delivery_address),
nvl(new.out_trade_no,old.out_trade_no),
nvl(new.tracking_no,old.tracking_no),
nvl(new.create_time,old.create_time),
nvl(new.payment_time,old.payment_time),
nvl(new.cancel_time,old.cancel_time),
nvl(new.finish_time,old.finish_time),
nvl(new.refund_time,old.refund_time),
nvl(new.refund_finish_time,old.refund_finish_time),
nvl(new.expire_time,old.expire_time),
nvl(new.feight_fee,old.feight_fee),
nvl(new.feight_fee_reduce,old.feight_fee_reduce),
nvl(new.activity_reduce_amount,old.activity_reduce_amount),
nvl(new.coupon_reduce_amount,old.coupon_reduce_amount),
nvl(new.original_amount,old.original_amount),
nvl(new.final_amount,old.final_amount),
case
when new.cancel_time is not null then date_format(new.cancel_time,'yyyy-MM-dd')
when new.finish_time is not null and date_add(date_format(new.finish_time,'yyyy-MM-dd'),7)='$do_date' and new.refund_time is null then '$do_date'
when new.refund_finish_time is not null then date_format(new.refund_finish_time,'yyyy-MM-dd')
when new.expire_time is not null then date_format(new.expire_time,'yyyy-MM-dd')
else '9999-99-99'
end
from
(
select
id,
order_status,
user_id,
province_id,
payment_way,
delivery_address,
out_trade_no,
tracking_no,
create_time,
payment_time,
cancel_time,
finish_time,
refund_time,
refund_finish_time,
expire_time,
feight_fee,
feight_fee_reduce,
activity_reduce_amount,
coupon_reduce_amount,
original_amount,
final_amount
from ${APP}.dwd_order_info
where dt='9999-99-99'
)old
full outer join
(
select
oi.id,
oi.order_status,
oi.user_id,
oi.province_id,
oi.payment_way,
oi.delivery_address,
oi.out_trade_no,
oi.tracking_no,
oi.create_time,
times.ts['1002'] payment_time,
times.ts['1003'] cancel_time,
times.ts['1004'] finish_time,
times.ts['1005'] refund_time,
times.ts['1006'] refund_finish_time,
oi.expire_time,
feight_fee,
feight_fee_reduce,
activity_reduce_amount,
coupon_reduce_amount,
original_amount,
final_amount
from
(
select
*
from ${APP}.ods_order_info
where dt='$do_date'
)oi
left join
(
select
order_id,
str_to_map(concat_ws(',',collect_set(concat(order_status,'=',operate_time))),',','=') ts
from ${APP}.ods_order_status_log
where dt='$do_date'
group by order_id
)times
on oi.id=times.order_id
)new
on old.id=new.id;"
dwd_order_detail="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_order_detail partition(dt='$do_date')
select
od.id,
od.order_id,
oi.user_id,
od.sku_id,
oi.province_id,
oda.activity_id,
oda.activity_rule_id,
odc.coupon_id,
od.create_time,
od.source_type,
od.source_id,
od.sku_num,
od.order_price*od.sku_num,
od.split_activity_amount,
od.split_coupon_amount,
od.split_final_amount
from
(
select
*
from ${APP}.ods_order_detail
where dt='$do_date'
)od
left join
(
select
id,
user_id,
province_id
from ${APP}.ods_order_info
where dt='$do_date'
)oi
on od.order_id=oi.id
left join
(
select
order_detail_id,
activity_id,
activity_rule_id
from ${APP}.ods_order_detail_activity
where dt='$do_date'
)oda
on od.id=oda.order_detail_id
left join
(
select
order_detail_id,
coupon_id
from ${APP}.ods_order_detail_coupon
where dt='$do_date'
)odc
on od.id=odc.order_detail_id;"
dwd_payment_info="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
set hive.exec.dynamic.partition.mode=nonstrict;
insert overwrite table ${APP}.dwd_payment_info partition(dt)
select
nvl(new.id,old.id),
nvl(new.order_id,old.order_id),
nvl(new.user_id,old.user_id),
nvl(new.province_id,old.province_id),
nvl(new.trade_no,old.trade_no),
nvl(new.out_trade_no,old.out_trade_no),
nvl(new.payment_type,old.payment_type),
nvl(new.payment_amount,old.payment_amount),
nvl(new.payment_status,old.payment_status),
nvl(new.create_time,old.create_time),
nvl(new.callback_time,old.callback_time),
nvl(date_format(nvl(new.callback_time,old.callback_time),'yyyy-MM-dd'),'9999-99-99')
from
(
select id,
order_id,
user_id,
province_id,
trade_no,
out_trade_no,
payment_type,
payment_amount,
payment_status,
create_time,
callback_time
from ${APP}.dwd_payment_info
where dt = '9999-99-99'
)old
full outer join
(
select
pi.id,
pi.out_trade_no,
pi.order_id,
pi.user_id,
oi.province_id,
pi.payment_type,
pi.trade_no,
pi.payment_amount,
pi.payment_status,
pi.create_time,
pi.callback_time
from
(
select * from ${APP}.ods_payment_info where dt='$do_date'
)pi
left join
(
select id,province_id from ${APP}.ods_order_info where dt='$do_date'
)oi
on pi.order_id=oi.id
)new
on old.id=new.id;"
dwd_cart_info="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_cart_info partition(dt='$do_date')
select
id,
user_id,
sku_id,
source_type,
source_id,
cart_price,
is_ordered,
create_time,
operate_time,
order_time,
sku_num
from ${APP}.ods_cart_info
where dt='$do_date';"
dwd_comment_info="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_comment_info partition(dt='$do_date')
select
id,
user_id,
sku_id,
spu_id,
order_id,
appraise,
create_time
from ${APP}.ods_comment_info where dt='$do_date';"
dwd_favor_info="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_favor_info partition(dt='$do_date')
select
id,
user_id,
sku_id,
spu_id,
is_cancel,
create_time,
cancel_time
from ${APP}.ods_favor_info
where dt='$do_date';"
dwd_coupon_use="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
set hive.exec.dynamic.partition.mode=nonstrict;
insert overwrite table ${APP}.dwd_coupon_use partition(dt)
select
nvl(new.id,old.id),
nvl(new.coupon_id,old.coupon_id),
nvl(new.user_id,old.user_id),
nvl(new.order_id,old.order_id),
nvl(new.coupon_status,old.coupon_status),
nvl(new.get_time,old.get_time),
nvl(new.using_time,old.using_time),
nvl(new.used_time,old.used_time),
nvl(new.expire_time,old.expire_time),
coalesce(date_format(nvl(new.used_time,old.used_time),'yyyy-MM-dd'),date_format(nvl(new.expire_time,old.expire_time),'yyyy-MM-dd'),'9999-99-99')
from
(
select
id,
coupon_id,
user_id,
order_id,
coupon_status,
get_time,
using_time,
used_time,
expire_time
from ${APP}.dwd_coupon_use
where dt='9999-99-99'
)old
full outer join
(
select
id,
coupon_id,
user_id,
order_id,
coupon_status,
get_time,
using_time,
used_time,
expire_time
from ${APP}.ods_coupon_use
where dt='$do_date'
)new
on old.id=new.id;"
dwd_order_refund_info="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_order_refund_info partition(dt='$do_date')
select
ri.id,
ri.user_id,
ri.order_id,
ri.sku_id,
oi.province_id,
ri.refund_type,
ri.refund_num,
ri.refund_amount,
ri.refund_reason_type,
ri.create_time
from
(
select * from ${APP}.ods_order_refund_info where dt='$do_date'
)ri
left join
(
select id,province_id from ${APP}.ods_order_info where dt='$do_date'
)oi
on ri.order_id=oi.id;"
dwd_refund_payment="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
set hive.exec.dynamic.partition.mode=nonstrict;
insert overwrite table ${APP}.dwd_refund_payment partition(dt)
select
nvl(new.id,old.id),
nvl(new.user_id,old.user_id),
nvl(new.order_id,old.order_id),
nvl(new.sku_id,old.sku_id),
nvl(new.province_id,old.province_id),
nvl(new.trade_no,old.trade_no),
nvl(new.out_trade_no,old.out_trade_no),
nvl(new.payment_type,old.payment_type),
nvl(new.refund_amount,old.refund_amount),
nvl(new.refund_status,old.refund_status),
nvl(new.create_time,old.create_time),
nvl(new.callback_time,old.callback_time),
nvl(date_format(nvl(new.callback_time,old.callback_time),'yyyy-MM-dd'),'9999-99-99')
from
(
select
id,
user_id,
order_id,
sku_id,
province_id,
trade_no,
out_trade_no,
payment_type,
refund_amount,
refund_status,
create_time,
callback_time
from ${APP}.dwd_refund_payment
where dt='9999-99-99'
)old
full outer join
(
select
rp.id,
user_id,
order_id,
sku_id,
province_id,
trade_no,
out_trade_no,
payment_type,
refund_amount,
refund_status,
create_time,
callback_time
from
(
select
id,
out_trade_no,
order_id,
sku_id,
payment_type,
trade_no,
refund_amount,
refund_status,
create_time,
callback_time
from ${APP}.ods_refund_payment
where dt='$do_date'
)rp
left join
(
select
id,
user_id,
province_id
from ${APP}.ods_order_info
where dt='$do_date'
)oi
on rp.order_id=oi.id
)new
on old.id=new.id;"
case $1 in
dwd_order_info )
hive -e "$dwd_order_info"
clear_data dwd_order_info
;;
dwd_order_detail )
hive -e "$dwd_order_detail"
;;
dwd_payment_info )
hive -e "$dwd_payment_info"
clear_data dwd_payment_info
;;
dwd_cart_info )
hive -e "$dwd_cart_info"
;;
dwd_comment_info )
hive -e "$dwd_comment_info"
;;
dwd_favor_info )
hive -e "$dwd_favor_info"
;;
dwd_coupon_use )
hive -e "$dwd_coupon_use"
clear_data dwd_coupon_use
;;
dwd_order_refund_info )
hive -e "$dwd_order_refund_info"
;;
dwd_refund_payment )
hive -e "$dwd_refund_payment"
clear_data dwd_refund_payment
;;
all )
hive -e "$dwd_order_info$dwd_order_detail$dwd_payment_info$dwd_cart_info$dwd_comment_info$dwd_favor_info$dwd_coupon_use$dwd_order_refund_info$dwd_refund_payment"
clear_data dwd_order_info
clear_data dwd_payment_info
clear_data dwd_coupon_use
clear_data dwd_refund_payment
;;
esac
(2)增加脚本执行权限
[atguigu@hadoop102 bin]$ chmod 777 ods_to_dwd_db.sh
2)脚本使用
(1)执行脚本
[atguigu@hadoop102 bin]$ ods_to_dwd_db.sh all 2020-06-14
(2)查看数据是否导入成功
第四章 数仓搭建-DWS层
DWS层采用宽表化手段,构建公共指标数据。其站在不同主题的角度,将数据进行汇总和聚合,得到每天每个主题的相关数据。
4.1 系统函数
4.1.1 nvl函数
1)基本语法
NVL(表达式1,表达式2)
如果表达式1为空值,NVL返回值为表达式2的值,否则返回表达式1的值。
该函数的目的是把一个空值(null)转换成一个实际的值。其表达式的值可以是数字型、字符型和日期型。但是表达式1和表达式2的数据类型必须为同一个类型。
2)案例实操
hive (gmall)> select nvl(1,0);
1
hive (gmall)> select nvl(null,"hello");
hello
4.1.2 日期处理函数
1)date_format函数(根据格式整理日期)
hive (gmall)> select date_format('2020-06-14','yyyy-MM');
2020-06
2)date_add函数(加减日期)
hive (gmall)> select date_add('2020-06-14',-1);
2020-06-13
hive (gmall)> select date_add('2020-06-14',1);
2020-06-15
3)next_day函数
- 取当前天的下一个周一
hive (gmall)> select next_day('2020-06-14','MO');
2020-06-15
说明:星期一到星期日的英文(Monday,Tuesday、Wednesday、Thursday、Friday、Saturday、Sunday)
- 取当前周的周一
hive (gmall)> select date_add(next_day('2020-06-14','MO'),-7);
2020-06-8
4)last_day函数(求当月最后一天日期)
hive (gmall)> select last_day('2020-06-14');
2020-06-30
4.1.3 复杂数据类型定义
1)map结构数据定义
map<string,string>
2)array结构数据定义
array<string>
3)struct结构数据定义
struct<id:int,name:string,age:int>
4)struct和array嵌套定义
array<struct<id:int,name:string,age:int>>
4.2 DWS层
DWS层表数据装载
4.2.1 每日设备行为
出于对后续每日活跃设备、每周活跃设备、每日新增设备等需求的考虑,我们利用用户行为DWD层的启动日志表,按照设备id进行聚合,得到DWS层的设备行为表。
1)建表语句
DROP TABLE IF EXISTS dws_visitor_action_daycount;
CREATE EXTERNAL TABLE dws_visitor_action_daycount
(
`mid_id` STRING COMMENT '设备id',
`brand` STRING COMMENT '设备品牌',
`model` STRING COMMENT '设备型号',
`is_new` STRING COMMENT '是否首次访问',
`channel` ARRAY<STRING> COMMENT '渠道',
`os` ARRAY<STRING> COMMENT '操作系统',
`area_code` ARRAY<STRING> COMMENT '地区ID',
`version_code` ARRAY<STRING> COMMENT '应用版本',
`visit_count` BIGINT COMMENT '访问次数',
`page_stats` ARRAY<STRUCT<page_id:STRING,page_count:BIGINT,during_time:BIGINT>> COMMENT '页面访问统计'
) COMMENT '每日设备行为表'
PARTITIONED BY(`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dws/dws_visitor_action_daycount'
TBLPROPERTIES ("parquet.compression"="lzo");
2)数据装载
insert overwrite table dws_visitor_action_daycount partition(dt='2020-06-14')
select
t1.mid_id,
t1.brand,
t1.model,
t1.is_new,
t1.channel,
t1.os,
t1.area_code,
t1.version_code,
t1.visit_count,
t3.page_stats
from
(
select
mid_id,
brand,
model,
if(array_contains(collect_set(is_new),'0'),'0','1') is_new,--ods_page_log中,同一天内,同一设备的is_new字段,可能全部为1,可能全部为0,也可能部分为0,部分为1(卸载重装),故做该处理
collect_set(channel) channel,
collect_set(os) os,
collect_set(area_code) area_code,
collect_set(version_code) version_code,
sum(if(last_page_id is null,1,0)) visit_count
from dwd_page_log
where dt='2020-06-14'
and last_page_id is null
group by mid_id,model,brand
)t1
join
(
select
mid_id,
brand,
model,
collect_set(named_struct('page_id',page_id,'page_count',page_count,'during_time',during_time)) page_stats
from
(
select
mid_id,
brand,
model,
page_id,
count(*) page_count,
sum(during_time) during_time
from dwd_page_log
where dt='2020-06-14'
group by mid_id,model,brand,page_id
)t2
group by mid_id,model,brand
)t3
on t1.mid_id=t3.mid_id and t1.brand=t3.brand and t1.model=t3.model;
3)查询加载结果
4.2.2 每日用户行为
每日用户行为表以用户(注册过的)为中心,关注用户的行为,以及该行为对应的度量值。
源自的表:
dwd_page_log 页面日志表
dwd_action_log 动作日志表
dwd_order_info 订单事实表
dwd_payment_info 支付事实表
dwd_order_refund_info 退单事实表
dwd_refund_payment 退款事实表
dwd_order_refund_info 退单事实表
dwd_coupon_use 优惠券领用事实表
dwd_comment_info 评价事实表
dwd_order_detail 订单明细事实表
1)建表语句
DROP TABLE IF EXISTS dws_user_action_daycount;
CREATE EXTERNAL TABLE dws_user_action_daycount
(
`user_id` STRING COMMENT '用户id',
`login_count` BIGINT COMMENT '登录次数',
`cart_count` BIGINT COMMENT '加入购物车次数',
`favor_count` BIGINT COMMENT '收藏次数',
`order_count` BIGINT COMMENT '下单次数',
`order_activity_count` BIGINT COMMENT '订单参与活动次数',
`order_activity_reduce_amount` DECIMAL(16,2) COMMENT '订单减免金额(活动)',
`order_coupon_count` BIGINT COMMENT '订单用券次数',
`order_coupon_reduce_amount` DECIMAL(16,2) COMMENT '订单减免金额(优惠券)',
`order_original_amount` DECIMAL(16,2) COMMENT '订单单原始金额',
`order_final_amount` DECIMAL(16,2) COMMENT '订单总金额',
`payment_count` BIGINT COMMENT '支付次数',
`payment_amount` DECIMAL(16,2) COMMENT '支付金额',
`refund_order_count` BIGINT COMMENT '退单次数',
`refund_order_num` BIGINT COMMENT '退单件数',
`refund_order_amount` DECIMAL(16,2) COMMENT '退单金额',
`refund_payment_count` BIGINT COMMENT '退款次数',
`refund_payment_num` BIGINT COMMENT '退款件数',
`refund_payment_amount` DECIMAL(16,2) COMMENT '退款金额',
`coupon_get_count` BIGINT COMMENT '优惠券领取次数',
`coupon_using_count` BIGINT COMMENT '优惠券使用(下单)次数',
`coupon_used_count` BIGINT COMMENT '优惠券使用(支付)次数',
`appraise_good_count` BIGINT COMMENT '好评数',
`appraise_mid_count` BIGINT COMMENT '中评数',
`appraise_bad_count` BIGINT COMMENT '差评数',
`appraise_default_count` BIGINT COMMENT '默认评价数',
`order_detail_stats` array<struct<sku_id:string,sku_num:bigint,order_count:bigint,activity_reduce_amount:decimal(16,2),coupon_reduce_amount:decimal(16,2),original_amount:decimal(16,2),final_amount:decimal(16,2)>> COMMENT '下单明细统计'
) COMMENT '每日用户行为'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dws/dws_user_action_daycount/'
TBLPROPERTIES ("parquet.compression"="lzo");
登录 次数要聚合自 dwd_start_log 启动日志是移动端特有的,PC端没有,不能使用,所以要用dwd_spage_log
2)数据装载
(1)首日装载
with
tmp_login as
(
select
dt,
user_id,
count(*) login_count
from dwd_page_log
where user_id is not null
and last_page_id is null
group by dt,user_id
),
tmp_cf as
(
select
dt,
user_id,
sum(if(action_id='cart_add',1,0)) cart_count,
sum(if(action_id='favor_add',1,0)) favor_count
from dwd_action_log
where user_id is not null
and action_id in ('cart_add','favor_add')
group by dt,user_id
),
tmp_order as
(
select
date_format(create_time,'yyyy-MM-dd') dt,
user_id,
count(*) order_count,
sum(if(activity_reduce_amount>0,1,0)) order_activity_count,
sum(if(coupon_reduce_amount>0,1,0)) order_coupon_count,
sum(activity_reduce_amount) order_activity_reduce_amount,
sum(coupon_reduce_amount) order_coupon_reduce_amount,
sum(original_amount) order_original_amount,
sum(final_amount) order_final_amount
from dwd_order_info
group by date_format(create_time,'yyyy-MM-dd'),user_id
),
tmp_pay as
(
select
date_format(callback_time,'yyyy-MM-dd') dt,
user_id,
count(*) payment_count,
sum(payment_amount) payment_amount
from dwd_payment_info
group by date_format(callback_time,'yyyy-MM-dd'),user_id
),
tmp_ri as
(
select
date_format(create_time,'yyyy-MM-dd') dt,
user_id,
count(*) refund_order_count,
sum(refund_num) refund_order_num,
sum(refund_amount) refund_order_amount
from dwd_order_refund_info
group by date_format(create_time,'yyyy-MM-dd'),user_id
),
tmp_rp as
(
select
date_format(callback_time,'yyyy-MM-dd') dt,
rp.user_id,
count(*) refund_payment_count,
sum(ri.refund_num) refund_payment_num,
sum(rp.refund_amount) refund_payment_amount
from
(
select
user_id,
order_id,
sku_id,
refund_amount,
callback_time
from dwd_refund_payment
)rp
left join
(
select
user_id,
order_id,
sku_id,
refund_num
from dwd_order_refund_info
)ri
on rp.order_id=ri.order_id
and rp.sku_id=rp.sku_id
group by date_format(callback_time,'yyyy-MM-dd'),rp.user_id
),
tmp_coupon as
(
select
coalesce(coupon_get.dt,coupon_using.dt,coupon_used.dt) dt,
coalesce(coupon_get.user_id,coupon_using.user_id,coupon_used.user_id) user_id,
nvl(coupon_get_count,0) coupon_get_count,
nvl(coupon_using_count,0) coupon_using_count,
nvl(coupon_used_count,0) coupon_used_count
from
(
select
date_format(get_time,'yyyy-MM-dd') dt,
user_id,
count(*) coupon_get_count
from dwd_coupon_use
where get_time is not null
group by user_id,date_format(get_time,'yyyy-MM-dd')
)coupon_get
full outer join
(
select
date_format(using_time,'yyyy-MM-dd') dt,
user_id,
count(*) coupon_using_count
from dwd_coupon_use
where using_time is not null
group by user_id,date_format(using_time,'yyyy-MM-dd')
)coupon_using
on coupon_get.dt=coupon_using.dt
and coupon_get.user_id=coupon_using.user_id
full outer join
(
select
date_format(used_time,'yyyy-MM-dd') dt,
user_id,
count(*) coupon_used_count
from dwd_coupon_use
where used_time is not null
group by user_id,date_format(used_time,'yyyy-MM-dd')
)coupon_used
on nvl(coupon_get.dt,coupon_using.dt)=coupon_used.dt
and nvl(coupon_get.user_id,coupon_using.user_id)=coupon_used.user_id
),
tmp_comment as
(
select
date_format(create_time,'yyyy-MM-dd') dt,
user_id,
sum(if(appraise='1201',1,0)) appraise_good_count,
sum(if(appraise='1202',1,0)) appraise_mid_count,
sum(if(appraise='1203',1,0)) appraise_bad_count,
sum(if(appraise='1204',1,0)) appraise_default_count
from dwd_comment_info
group by date_format(create_time,'yyyy-MM-dd'),user_id
),
tmp_od as
(
select
dt,
user_id,
collect_set(named_struct('sku_id',sku_id,'sku_num',sku_num,'order_count',order_count,'activity_reduce_amount',activity_reduce_amount,'coupon_reduce_amount',coupon_reduce_amount,'original_amount',original_amount,'final_amount',final_amount)) order_detail_stats
from
(
select
date_format(create_time,'yyyy-MM-dd') dt,
user_id,
sku_id,
sum(sku_num) sku_num,
count(*) order_count,
cast(sum(split_activity_amount) as decimal(16,2)) activity_reduce_amount,
cast(sum(split_coupon_amount) as decimal(16,2)) coupon_reduce_amount,
cast(sum(original_amount) as decimal(16,2)) original_amount,
cast(sum(split_final_amount) as decimal(16,2)) final_amount
from dwd_order_detail
group by date_format(create_time,'yyyy-MM-dd'),user_id,sku_id
)t1
group by dt,user_id
)
insert overwrite table dws_user_action_daycount partition(dt)
select coalesce(tmp_login.user_id,tmp_cf.user_id,tmp_order.user_id,tmp_pay.user_id,tmp_ri.user_id,tmp_rp.user_id,tmp_comment.user_id,tmp_coupon.user_id,tmp_od.user_id),
nvl(login_count,0),
nvl(cart_count,0),
nvl(favor_count,0),
nvl(order_count,0),
nvl(order_activity_count,0),
nvl(order_activity_reduce_amount,0),
nvl(order_coupon_count,0),
nvl(order_coupon_reduce_amount,0),
nvl(order_original_amount,0),
nvl(order_final_amount,0),
nvl(payment_count,0),
nvl(payment_amount,0),
nvl(refund_order_count,0),
nvl(refund_order_num,0),
nvl(refund_order_amount,0),
nvl(refund_payment_count,0),
nvl(refund_payment_num,0),
nvl(refund_payment_amount,0),
nvl(coupon_get_count,0),
nvl(coupon_using_count,0),
nvl(coupon_used_count,0),
nvl(appraise_good_count,0),
nvl(appraise_mid_count,0),
nvl(appraise_bad_count,0),
nvl(appraise_default_count,0),
order_detail_stats,
coalesce(tmp_login.dt,tmp_cf.dt,tmp_order.dt,tmp_pay.dt,tmp_ri.dt,tmp_rp.dt,tmp_comment.dt,tmp_coupon.dt,tmp_od.dt)
from tmp_login
full outer join tmp_cf on tmp_login.user_id=tmp_cf.user_id and tmp_login.dt=tmp_cf.dt
full outer join tmp_order on coalesce(tmp_login.user_id,tmp_cf.user_id)=tmp_order.user_id
and coalesce(tmp_login.dt,tmp_cf.dt)=tmp_order.dt
full outer join tmp_pay on coalesce(tmp_login.user_id,tmp_cf.user_id,tmp_order.user_id)=tmp_pay.user_id
and coalesce(tmp_login.dt,tmp_cf.dt,tmp_order.dt)=tmp_pay.dt
full outer join tmp_ri on coalesce(tmp_login.user_id,tmp_cf.user_id, tmp_order.user_id,tmp_pay.user_id)=tmp_ri.user_id
and coalesce(tmp_login.dt,tmp_cf.dt,tmp_order.dt,tmp_pay.dt)=tmp_ri.dt
full outer join tmp_rp on coalesce(tmp_login.user_id,tmp_cf.user_id,tmp_order.user_id,tmp_pay.user_id,tmp_ri.user_id)=tmp_rp.user_id
and coalesce(tmp_login.dt,tmp_cf.dt,tmp_order.dt,tmp_pay.dt,tmp_ri.dt)=tmp_rp.dt
full outer join tmp_comment
on coalesce(tmp_login.user_id,tmp_cf.user_id,tmp_order.user_id,tmp_pay.user_id,tmp_ri.user_id,tmp_rp.user_id)=tmp_comment.user_id
and coalesce(tmp_login.dt,tmp_cf.dt,tmp_order.dt,tmp_pay.dt,tmp_ri.dt,tmp_rp.dt)=tmp_comment.dt
full outer join tmp_coupon
on coalesce(tmp_login.user_id,tmp_cf.user_id,tmp_order.user_id,tmp_pay.user_id,tmp_ri.user_id,tmp_rp.user_id,tmp_comment.user_id)=tmp_coupon.user_id
and coalesce(tmp_login.dt,tmp_cf.dt,tmp_order.dt,tmp_pay.dt,tmp_ri.dt,tmp_rp.dt,tmp_comment.dt)=tmp_coupon.dt
full outer join tmp_od
on coalesce(tmp_login.user_id,tmp_cf.user_id,tmp_order.user_id,tmp_pay.user_id,tmp_ri.user_id,tmp_rp.user_id,tmp_comment.user_id,tmp_coupon.user_id)=tmp_od.user_id
and coalesce(tmp_login.dt,tmp_cf.dt,tmp_order.dt,tmp_pay.dt,tmp_ri.dt,tmp_rp.dt,tmp_comment.dt,tmp_coupon.dt)=tmp_od.dt;
COALESCE是一个函数, (expression_1, expression_2, ...,expression_n)依次参考各参数表达式,遇到非null值即停止并返回该值。如果所有的表达式都是空值,最终将返回一个空值。使用COALESCE在于大部分包含空值的表达式最终将返回空值。
(2)每日装载
with
tmp_login as
(
select
user_id,
count(*) login_count
from dwd_page_log
where dt='2020-06-15'
and user_id is not null
and last_page_id is null
group by user_id
),
tmp_cf as
(
select
user_id,
sum(if(action_id='cart_add',1,0)) cart_count,
sum(if(action_id='favor_add',1,0)) favor_count
from dwd_action_log
where dt='2020-06-15'
and user_id is not null
and action_id in ('cart_add','favor_add')
group by user_id
),
tmp_order as
(
select
user_id,
count(*) order_count,
sum(if(activity_reduce_amount>0,1,0)) order_activity_count,
sum(if(coupon_reduce_amount>0,1,0)) order_coupon_count,
sum(activity_reduce_amount) order_activity_reduce_amount,
sum(coupon_reduce_amount) order_coupon_reduce_amount,
sum(original_amount) order_original_amount,
sum(final_amount) order_final_amount
from dwd_order_info
where (dt='2020-06-15'
or dt='9999-99-99')
and date_format(create_time,'yyyy-MM-dd')='2020-06-15'
group by user_id
),
tmp_pay as
(
select
user_id,
count(*) payment_count,
sum(payment_amount) payment_amount
from dwd_payment_info
where dt='2020-06-15'
group by user_id
),
tmp_ri as
(
select
user_id,
count(*) refund_order_count,
sum(refund_num) refund_order_num,
sum(refund_amount) refund_order_amount
from dwd_order_refund_info
where dt='2020-06-15'
group by user_id
),
tmp_rp as
(
select
rp.user_id,
count(*) refund_payment_count,
sum(ri.refund_num) refund_payment_num,
sum(rp.refund_amount) refund_payment_amount
from
(
select
user_id,
order_id,
sku_id,
refund_amount
from dwd_refund_payment
where dt='2020-06-15'
)rp
left join
(
select
user_id,
order_id,
sku_id,
refund_num
from dwd_order_refund_info
where dt>=date_add('2020-06-15',-15)
)ri
on rp.order_id=ri.order_id
and rp.sku_id=rp.sku_id
group by rp.user_id
),
tmp_coupon as
(
select
user_id,
sum(if(date_format(get_time,'yyyy-MM-dd')='2020-06-15',1,0)) coupon_get_count,
sum(if(date_format(using_time,'yyyy-MM-dd')='2020-06-15',1,0)) coupon_using_count,
sum(if(date_format(used_time,'yyyy-MM-dd')='2020-06-15',1,0)) coupon_used_count
from dwd_coupon_use
where (dt='2020-06-15' or dt='9999-99-99')
and (date_format(get_time, 'yyyy-MM-dd') = '2020-06-15'
or date_format(using_time,'yyyy-MM-dd')='2020-06-15'
or date_format(used_time,'yyyy-MM-dd')='2020-06-15')
group by user_id
),
tmp_comment as
(
select
user_id,
sum(if(appraise='1201',1,0)) appraise_good_count,
sum(if(appraise='1202',1,0)) appraise_mid_count,
sum(if(appraise='1203',1,0)) appraise_bad_count,
sum(if(appraise='1204',1,0)) appraise_default_count
from dwd_comment_info
where dt='2020-06-15'
group by user_id
),
tmp_od as
(
select
user_id,
collect_set(named_struct('sku_id',sku_id,'sku_num',sku_num,'order_count',order_count,'activity_reduce_amount',activity_reduce_amount,'coupon_reduce_amount',coupon_reduce_amount,'original_amount',original_amount,'final_amount',final_amount)) order_detail_stats
from
(
select
user_id,
sku_id,
sum(sku_num) sku_num,
count(*) order_count,
cast(sum(split_activity_amount) as decimal(16,2)) activity_reduce_amount,
cast(sum(split_coupon_amount) as decimal(16,2)) coupon_reduce_amount,
cast(sum(original_amount) as decimal(16,2)) original_amount,
cast(sum(split_final_amount) as decimal(16,2)) final_amount
from dwd_order_detail
where dt='2020-06-15'
group by user_id,sku_id
)t1
group by user_id
)
insert overwrite table dws_user_action_daycount partition(dt='2020-06-15')
select
coalesce(tmp_login.user_id,tmp_cf.user_id,tmp_order.user_id,tmp_pay.user_id,tmp_ri.user_id,tmp_rp.user_id,tmp_comment.user_id,tmp_coupon.user_id,tmp_od.user_id),
nvl(login_count,0),
nvl(cart_count,0),
nvl(favor_count,0),
nvl(order_count,0),
nvl(order_activity_count,0),
nvl(order_activity_reduce_amount,0),
nvl(order_coupon_count,0),
nvl(order_coupon_reduce_amount,0),
nvl(order_original_amount,0),
nvl(order_final_amount,0),
nvl(payment_count,0),
nvl(payment_amount,0),
nvl(refund_order_count,0),
nvl(refund_order_num,0),
nvl(refund_order_amount,0),
nvl(refund_payment_count,0),
nvl(refund_payment_num,0),
nvl(refund_payment_amount,0),
nvl(coupon_get_count,0),
nvl(coupon_using_count,0),
nvl(coupon_used_count,0),
nvl(appraise_good_count,0),
nvl(appraise_mid_count,0),
nvl(appraise_bad_count,0),
nvl(appraise_default_count,0),
order_detail_stats
from tmp_login
full outer join tmp_cf on tmp_login.user_id=tmp_cf.user_id
full outer join tmp_order on coalesce(tmp_login.user_id,tmp_cf.user_id)=tmp_order.user_id
full outer join tmp_pay on coalesce(tmp_login.user_id,tmp_cf.user_id,tmp_order.user_id)=tmp_pay.user_id
full outer join tmp_ri on coalesce(tmp_login.user_id,tmp_cf.user_id,tmp_order.user_id,tmp_pay.user_id)=tmp_ri.user_id
full outer join tmp_rp on coalesce(tmp_login.user_id,tmp_cf.user_id,tmp_order.user_id,tmp_pay.user_id,tmp_ri.user_id)=tmp_rp.user_id
full outer join tmp_comment on coalesce(tmp_login.user_id,tmp_cf.user_id,tmp_order.user_id,tmp_pay.user_id,tmp_ri.user_id,tmp_rp.user_id)=tmp_comment.user_id
full outer join tmp_coupon on coalesce(tmp_login.user_id,tmp_cf.user_id,tmp_order.user_id,tmp_pay.user_id,tmp_ri.user_id,tmp_rp.user_id,tmp_comment.user_id)=tmp_coupon.user_id
full outer join tmp_od on coalesce(tmp_login.user_id,tmp_cf.user_id,tmp_order.user_id,tmp_pay.user_id,tmp_ri.user_id,tmp_rp.user_id,tmp_comment.user_id,tmp_coupon.user_id)=tmp_od.user_id;
3)查询加载结果
4.2.3 每日商品行为
每日商品行为表以商品为中心,通过商品维度有关的事实表获得与商品相关的不同维度的度量值。
源自的表:
dwd_order_detail 订单明细事实表
dwd_payment_info 支付事实表
dwd_order_refund_info 退单事实表
dwd_refund_payment 退款事实表
dwd_action_log 动作日志表
dwd_comment_info 评价事实表
1)建表语句
DROP TABLE IF EXISTS dws_sku_action_daycount;
CREATE EXTERNAL TABLE dws_sku_action_daycount
(
`sku_id` STRING COMMENT 'sku_id',
`order_count` BIGINT COMMENT '被下单次数',
`order_num` BIGINT COMMENT '被下单件数',
`order_activity_count` BIGINT COMMENT '参与活动被下单次数',
`order_coupon_count` BIGINT COMMENT '使用优惠券被下单次数',
`order_activity_reduce_amount` DECIMAL(16,2) COMMENT '优惠金额(活动)',
`order_coupon_reduce_amount` DECIMAL(16,2) COMMENT '优惠金额(优惠券)',
`order_original_amount` DECIMAL(16,2) COMMENT '被下单原价金额',
`order_final_amount` DECIMAL(16,2) COMMENT '被下单最终金额',
`payment_count` BIGINT COMMENT '被支付次数',
`payment_num` BIGINT COMMENT '被支付件数',
`payment_amount` DECIMAL(16,2) COMMENT '被支付金额',
`refund_order_count` BIGINT COMMENT '被退单次数',
`refund_order_num` BIGINT COMMENT '被退单件数',
`refund_order_amount` DECIMAL(16,2) COMMENT '被退单金额',
`refund_payment_count` BIGINT COMMENT '被退款次数',
`refund_payment_num` BIGINT COMMENT '被退款件数',
`refund_payment_amount` DECIMAL(16,2) COMMENT '被退款金额',
`cart_count` BIGINT COMMENT '被加入购物车次数',
`favor_count` BIGINT COMMENT '被收藏次数',
`appraise_good_count` BIGINT COMMENT '好评数',
`appraise_mid_count` BIGINT COMMENT '中评数',
`appraise_bad_count` BIGINT COMMENT '差评数',
`appraise_default_count` BIGINT COMMENT '默认评价数'
) COMMENT '每日商品行为'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dws/dws_sku_action_daycount/'
TBLPROPERTIES ("parquet.compression"="lzo");
2)数据装载
(1)首日装载
with
-- 下单情况统计,统计每件SKU当天被下单的情况
tmp_order as
(
select
date_format(create_time,'yyyy-MM-dd') dt,
sku_id,
count(*) order_count,
sum(sku_num) order_num,
sum(if(split_activity_amount>0,1,0)) order_activity_count,
sum(if(split_coupon_amount>0,1,0)) order_coupon_count,
sum(split_activity_amount) order_activity_reduce_amount,
sum(split_coupon_amount) order_coupon_reduce_amount,
sum(original_amount) order_original_amount,
sum(split_final_amount) order_final_amount
from dwd_order_detail
group by date_format(create_time,'yyyy-MM-dd'),sku_id
),
-- 支付统计
tmp_pay as
(
select
date_format(callback_time,'yyyy-MM-dd') dt,
sku_id,
count(*) payment_count,
sum(sku_num) payment_num,
sum(split_final_amount) payment_amount
from dwd_order_detail od
join
(
select
order_id,
callback_time
from dwd_payment_info
where callback_time is not null
)pi on pi.order_id=od.order_id
group by date_format(callback_time,'yyyy-MM-dd'),sku_id
),
tmp_ri as
(
select
date_format(create_time,'yyyy-MM-dd') dt,
sku_id,
count(*) refund_order_count,
sum(refund_num) refund_order_num,
sum(refund_amount) refund_order_amount
from dwd_order_refund_info
group by date_format(create_time,'yyyy-MM-dd'),sku_id
),
tmp_rp as
(
select
date_format(callback_time,'yyyy-MM-dd') dt,
rp.sku_id,
count(*) refund_payment_count,
sum(ri.refund_num) refund_payment_num,
sum(refund_amount) refund_payment_amount
from
(
select
order_id,
sku_id,
refund_amount,
callback_time
from dwd_refund_payment
)rp
left join
(
select
order_id,
sku_id,
refund_num
from dwd_order_refund_info
)ri
on rp.order_id=ri.order_id
and rp.sku_id=ri.sku_id
group by date_format(callback_time,'yyyy-MM-dd'),rp.sku_id
),
tmp_cf as
(
select
dt,
item sku_id,
sum(if(action_id='cart_add',1,0)) cart_count,
sum(if(action_id='favor_add',1,0)) favor_count
from dwd_action_log
where action_id in ('cart_add','favor_add')
group by dt,item
),
tmp_comment as
(
select
date_format(create_time,'yyyy-MM-dd') dt,
sku_id,
sum(if(appraise='1201',1,0)) appraise_good_count,
sum(if(appraise='1202',1,0)) appraise_mid_count,
sum(if(appraise='1203',1,0)) appraise_bad_count,
sum(if(appraise='1204',1,0)) appraise_default_count
from dwd_comment_info
group by date_format(create_time,'yyyy-MM-dd'),sku_id
)
insert overwrite table dws_sku_action_daycount partition(dt)
select
sku_id,
sum(order_count),
sum(order_num),
sum(order_activity_count),
sum(order_coupon_count),
sum(order_activity_reduce_amount),
sum(order_coupon_reduce_amount),
sum(order_original_amount),
sum(order_final_amount),
sum(payment_count),
sum(payment_num),
sum(payment_amount),
sum(refund_order_count),
sum(refund_order_num),
sum(refund_order_amount),
sum(refund_payment_count),
sum(refund_payment_num),
sum(refund_payment_amount),
sum(cart_count),
sum(favor_count),
sum(appraise_good_count),
sum(appraise_mid_count),
sum(appraise_bad_count),
sum(appraise_default_count),
dt
from
(
select
dt,
sku_id,
order_count,
order_num,
order_activity_count,
order_coupon_count,
order_activity_reduce_amount,
order_coupon_reduce_amount,
order_original_amount,
order_final_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_order_count,
0 refund_order_num,
0 refund_order_amount,
0 refund_payment_count,
0 refund_payment_num,
0 refund_payment_amount,
0 cart_count,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_order
union all
select
dt,
sku_id,
0 order_count,
0 order_num,
0 order_activity_count,
0 order_coupon_count,
0 order_activity_reduce_amount,
0 order_coupon_reduce_amount,
0 order_original_amount,
0 order_final_amount,
payment_count,
payment_num,
payment_amount,
0 refund_order_count,
0 refund_order_num,
0 refund_order_amount,
0 refund_payment_count,
0 refund_payment_num,
0 refund_payment_amount,
0 cart_count,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_pay
union all
select
dt,
sku_id,
0 order_count,
0 order_num,
0 order_activity_count,
0 order_coupon_count,
0 order_activity_reduce_amount,
0 order_coupon_reduce_amount,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
refund_order_count,
refund_order_num,
refund_order_amount,
0 refund_payment_count,
0 refund_payment_num,
0 refund_payment_amount,
0 cart_count,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_ri
union all
select
dt,
sku_id,
0 order_count,
0 order_num,
0 order_activity_count,
0 order_coupon_count,
0 order_activity_reduce_amount,
0 order_coupon_reduce_amount,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_order_count,
0 refund_order_num,
0 refund_order_amount,
refund_payment_count,
refund_payment_num,
refund_payment_amount,
0 cart_count,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_rp
union all
select
dt,
sku_id,
0 order_count,
0 order_num,
0 order_activity_count,
0 order_coupon_count,
0 order_activity_reduce_amount,
0 order_coupon_reduce_amount,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_order_count,
0 refund_order_num,
0 refund_order_amount,
0 refund_payment_count,
0 refund_payment_num,
0 refund_payment_amount,
cart_count,
favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_cf
union all
select
dt,
sku_id,
0 order_count,
0 order_num,
0 order_activity_count,
0 order_coupon_count,
0 order_activity_reduce_amount,
0 order_coupon_reduce_amount,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_order_count,
0 refund_order_num,
0 refund_order_amount,
0 refund_payment_count,
0 refund_payment_num,
0 refund_payment_amount,
0 cart_count,
0 favor_count,
appraise_good_count,
appraise_mid_count,
appraise_bad_count,
appraise_default_count
from tmp_comment
)t1
group by dt,sku_id;
(2)每日装载
with
tmp_order as
(
select
sku_id,
count(*) order_count,
sum(sku_num) order_num,
sum(if(split_activity_amount>0,1,0)) order_activity_count,
sum(if(split_coupon_amount>0,1,0)) order_coupon_count,
sum(split_activity_amount) order_activity_reduce_amount,
sum(split_coupon_amount) order_coupon_reduce_amount,
sum(original_amount) order_original_amount,
sum(split_final_amount) order_final_amount
from dwd_order_detail
where dt='2020-06-15'
group by sku_id
),
tmp_pay as
(
select
sku_id,
count(*) payment_count,
sum(sku_num) payment_num,
sum(split_final_amount) payment_amount
from dwd_order_detail
where (dt='2020-06-15'
or dt=date_add('2020-06-15',-1))
and order_id in
(
select order_id from dwd_payment_info where dt='2020-06-15'
)
group by sku_id
),
tmp_ri as
(
select
sku_id,
count(*) refund_order_count,
sum(refund_num) refund_order_num,
sum(refund_amount) refund_order_amount
from dwd_order_refund_info
where dt='2020-06-15'
group by sku_id
),
tmp_rp as
(
select
rp.sku_id,
count(*) refund_payment_count,
sum(ri.refund_num) refund_payment_num,
sum(refund_amount) refund_payment_amount
from
(
select
order_id,
sku_id,
refund_amount
from dwd_refund_payment
where dt='2020-06-15'
)rp
left join
(
select
order_id,
sku_id,
refund_num
from dwd_order_refund_info
where dt>=date_add('2020-06-15',-15)
)ri
on rp.order_id=ri.order_id
and rp.sku_id=ri.sku_id
group by rp.sku_id
),
tmp_cf as
(
select
item sku_id,
sum(if(action_id='cart_add',1,0)) cart_count,
sum(if(action_id='favor_add',1,0)) favor_count
from dwd_action_log
where dt='2020-06-15'
and action_id in ('cart_add','favor_add')
group by item
),
tmp_comment as
(
select
sku_id,
sum(if(appraise='1201',1,0)) appraise_good_count,
sum(if(appraise='1202',1,0)) appraise_mid_count,
sum(if(appraise='1203',1,0)) appraise_bad_count,
sum(if(appraise='1204',1,0)) appraise_default_count
from dwd_comment_info
where dt='2020-06-15'
group by sku_id
)
insert overwrite table dws_sku_action_daycount partition(dt='2020-06-15')
select
sku_id,
sum(order_count),
sum(order_num),
sum(order_activity_count),
sum(order_coupon_count),
sum(order_activity_reduce_amount),
sum(order_coupon_reduce_amount),
sum(order_original_amount),
sum(order_final_amount),
sum(payment_count),
sum(payment_num),
sum(payment_amount),
sum(refund_order_count),
sum(refund_order_num),
sum(refund_order_amount),
sum(refund_payment_count),
sum(refund_payment_num),
sum(refund_payment_amount),
sum(cart_count),
sum(favor_count),
sum(appraise_good_count),
sum(appraise_mid_count),
sum(appraise_bad_count),
sum(appraise_default_count)
from
(
select
sku_id,
order_count,
order_num,
order_activity_count,
order_coupon_count,
order_activity_reduce_amount,
order_coupon_reduce_amount,
order_original_amount,
order_final_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_order_count,
0 refund_order_num,
0 refund_order_amount,
0 refund_payment_count,
0 refund_payment_num,
0 refund_payment_amount,
0 cart_count,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_order
union all
select
sku_id,
0 order_count,
0 order_num,
0 order_activity_count,
0 order_coupon_count,
0 order_activity_reduce_amount,
0 order_coupon_reduce_amount,
0 order_original_amount,
0 order_final_amount,
payment_count,
payment_num,
payment_amount,
0 refund_order_count,
0 refund_order_num,
0 refund_order_amount,
0 refund_payment_count,
0 refund_payment_num,
0 refund_payment_amount,
0 cart_count,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_pay
union all
select
sku_id,
0 order_count,
0 order_num,
0 order_activity_count,
0 order_coupon_count,
0 order_activity_reduce_amount,
0 order_coupon_reduce_amount,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
refund_order_count,
refund_order_num,
refund_order_amount,
0 refund_payment_count,
0 refund_payment_num,
0 refund_payment_amount,
0 cart_count,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_ri
union all
select
sku_id,
0 order_count,
0 order_num,
0 order_activity_count,
0 order_coupon_count,
0 order_activity_reduce_amount,
0 order_coupon_reduce_amount,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_order_count,
0 refund_order_num,
0 refund_order_amount,
refund_payment_count,
refund_payment_num,
refund_payment_amount,
0 cart_count,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_rp
union all
select
sku_id,
0 order_count,
0 order_num,
0 order_activity_count,
0 order_coupon_count,
0 order_activity_reduce_amount,
0 order_coupon_reduce_amount,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_order_count,
0 refund_order_num,
0 refund_order_amount,
0 refund_payment_count,
0 refund_payment_num,
0 refund_payment_amount,
cart_count,
favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_cf
union all
select
sku_id,
0 order_count,
0 order_num,
0 order_activity_count,
0 order_coupon_count,
0 order_activity_reduce_amount,
0 order_coupon_reduce_amount,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_order_count,
0 refund_order_num,
0 refund_order_amount,
0 refund_payment_count,
0 refund_payment_num,
0 refund_payment_amount,
0 cart_count,
0 favor_count,
appraise_good_count,
appraise_mid_count,
appraise_bad_count,
appraise_default_count
from tmp_comment
)t1
group by sku_id;
3)查询加载结果
4.2.4 每日优惠券统计
源自的表:
dwd_coupon_use 优惠券领用事实表
dwd_order_detail 订单明细事实表
dwd_payment_info 支付事实表
1)建表语句
DROP TABLE IF EXISTS dws_coupon_info_daycount;
CREATE EXTERNAL TABLE dws_coupon_info_daycount(
`coupon_id` STRING COMMENT '优惠券ID',
`get_count` BIGINT COMMENT '被领取次数',
`order_count` BIGINT COMMENT '被使用(下单)次数',
`order_reduce_amount` DECIMAL(16,2) COMMENT '用券下单优惠金额',
`order_original_amount` DECIMAL(16,2) COMMENT '用券订单原价金额',
`order_final_amount` DECIMAL(16,2) COMMENT '用券下单最终金额',
`payment_count` BIGINT COMMENT '被使用(支付)次数',
`payment_reduce_amount` DECIMAL(16,2) COMMENT '用券支付优惠金额',
`payment_amount` DECIMAL(16,2) COMMENT '用券支付总金额',
`expire_count` BIGINT COMMENT '过期次数'
) COMMENT '每日优惠券统计'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dws/dws_coupon_info_daycount/'
TBLPROPERTIES ("parquet.compression"="lzo");
2)数据装载
(1)首日装载
with
tmp_cu as
(
select
coalesce(coupon_get.dt,coupon_using.dt,coupon_used.dt,coupon_exprie.dt) dt,
coalesce(coupon_get.coupon_id,coupon_using.coupon_id,coupon_used.coupon_id,coupon_exprie.coupon_id) coupon_id,
nvl(get_count,0) get_count,
nvl(order_count,0) order_count,
nvl(payment_count,0) payment_count,
nvl(expire_count,0) expire_count
from
(
select
date_format(get_time,'yyyy-MM-dd') dt,
coupon_id,
count(*) get_count
from dwd_coupon_use
group by date_format(get_time,'yyyy-MM-dd'),coupon_id
)coupon_get
full outer join
(
select
date_format(using_time,'yyyy-MM-dd') dt,
coupon_id,
count(*) order_count
from dwd_coupon_use
where using_time is not null
group by date_format(using_time,'yyyy-MM-dd'),coupon_id
)coupon_using
on coupon_get.dt=coupon_using.dt
and coupon_get.coupon_id=coupon_using.coupon_id
full outer join
(
select
date_format(used_time,'yyyy-MM-dd') dt,
coupon_id,
count(*) payment_count
from dwd_coupon_use
where used_time is not null
group by date_format(used_time,'yyyy-MM-dd'),coupon_id
)coupon_used
on nvl(coupon_get.dt,coupon_using.dt)=coupon_used.dt
and nvl(coupon_get.coupon_id,coupon_using.coupon_id)=coupon_used.coupon_id
full outer join
(
select
date_format(expire_time,'yyyy-MM-dd') dt,
coupon_id,
count(*) expire_count
from dwd_coupon_use
where expire_time is not null
group by date_format(expire_time,'yyyy-MM-dd'),coupon_id
)coupon_exprie
on coalesce(coupon_get.dt,coupon_using.dt,coupon_used.dt)=coupon_exprie.dt
and coalesce(coupon_get.coupon_id,coupon_using.coupon_id,coupon_used.coupon_id)=coupon_exprie.coupon_id
),
tmp_order as
(
select
date_format(create_time,'yyyy-MM-dd') dt,
coupon_id,
sum(split_coupon_amount) order_reduce_amount,
sum(original_amount) order_original_amount,
sum(split_final_amount) order_final_amount
from dwd_order_detail
where coupon_id is not null
group by date_format(create_time,'yyyy-MM-dd'),coupon_id
),
tmp_pay as
(
select
date_format(callback_time,'yyyy-MM-dd') dt,
coupon_id,
sum(split_coupon_amount) payment_reduce_amount,
sum(split_final_amount) payment_amount
from
(
select
order_id,
coupon_id,
split_coupon_amount,
split_final_amount
from dwd_order_detail
where coupon_id is not null
)od
join
(
select
order_id,
callback_time
from dwd_payment_info
)pi
on od.order_id=pi.order_id
group by date_format(callback_time,'yyyy-MM-dd'),coupon_id
)
insert overwrite table dws_coupon_info_daycount partition(dt)
select
coupon_id,
sum(get_count),
sum(order_count),
sum(order_reduce_amount),
sum(order_original_amount),
sum(order_final_amount),
sum(payment_count),
sum(payment_reduce_amount),
sum(payment_amount),
sum(expire_count),
dt
from
(
select
dt,
coupon_id,
get_count,
order_count,
0 order_reduce_amount,
0 order_original_amount,
0 order_final_amount,
payment_count,
0 payment_reduce_amount,
0 payment_amount,
expire_count
from tmp_cu
union all
select
dt,
coupon_id,
0 get_count,
0 order_count,
order_reduce_amount,
order_original_amount,
order_final_amount,
0 payment_count,
0 payment_reduce_amount,
0 payment_amount,
0 expire_count
from tmp_order
union all
select
dt,
coupon_id,
0 get_count,
0 order_count,
0 order_reduce_amount,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
payment_reduce_amount,
payment_amount,
0 expire_count
from tmp_pay
)t1
group by dt,coupon_id;
(2)每日装载
with
tmp_cu as
(
select
coupon_id,
sum(if(date_format(get_time,'yyyy-MM-dd')='2020-06-15',1,0)) get_count,
sum(if(date_format(using_time,'yyyy-MM-dd')='2020-06-15',1,0)) order_count,
sum(if(date_format(used_time,'yyyy-MM-dd')='2020-06-15',1,0)) payment_count,
sum(if(date_format(expire_time,'yyyy-MM-dd')='2020-06-15',1,0)) expire_count
from dwd_coupon_use
where dt='9999-99-99'
or dt='2020-06-15'
group by coupon_id
),
tmp_order as
(
select
coupon_id,
sum(split_coupon_amount) order_reduce_amount,
sum(original_amount) order_original_amount,
sum(split_final_amount) order_final_amount
from dwd_order_detail
where dt='2020-06-15'
and coupon_id is not null
group by coupon_id
),
tmp_pay as
(
select
coupon_id,
sum(split_coupon_amount) payment_reduce_amount,
sum(split_final_amount) payment_amount
from dwd_order_detail
where (dt='2020-06-15'
or dt=date_add('2020-06-15',-1))
and coupon_id is not null
and order_id in
(
select order_id from dwd_payment_info where dt='2020-06-15'
)
group by coupon_id
)
insert overwrite table dws_coupon_info_daycount partition(dt='2020-06-15')
select
coupon_id,
sum(get_count),
sum(order_count),
sum(order_reduce_amount),
sum(order_original_amount),
sum(order_final_amount),
sum(payment_count),
sum(payment_reduce_amount),
sum(payment_amount),
sum(expire_count)
from
(
select
coupon_id,
get_count,
order_count,
0 order_reduce_amount,
0 order_original_amount,
0 order_final_amount,
payment_count,
0 payment_reduce_amount,
0 payment_amount,
expire_count
from tmp_cu
union all
select
coupon_id,
0 get_count,
0 order_count,
order_reduce_amount,
order_original_amount,
order_final_amount,
0 payment_count,
0 payment_reduce_amount,
0 payment_amount,
0 expire_count
from tmp_order
union all
select
coupon_id,
0 get_count,
0 order_count,
0 order_reduce_amount,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
payment_reduce_amount,
payment_amount,
0 expire_count
from tmp_pay
)t1
group by coupon_id;
3)查询加载结果
4.2.5 每日活动统计
以活动为中心。
源自的表:
dwd_order_detail 订单明细事实表
dwd_payment_info 支付事实表
1)建表语句
DROP TABLE IF EXISTS dws_activity_info_daycount;
CREATE EXTERNAL TABLE dws_activity_info_daycount(
`activity_rule_id` STRING COMMENT '活动规则ID',
`activity_id` STRING COMMENT '活动ID',
`order_count` BIGINT COMMENT '参与某活动某规则下单次数', `order_reduce_amount` DECIMAL(16,2) COMMENT '参与某活动某规则下单减免金额',
`order_original_amount` DECIMAL(16,2) COMMENT '参与某活动某规则下单原始金额',
`order_final_amount` DECIMAL(16,2) COMMENT '参与某活动某规则下单最终金额',
`payment_count` BIGINT COMMENT '参与某活动某规则支付次数',
`payment_reduce_amount` DECIMAL(16,2) COMMENT '参与某活动某规则支付减免金额',
`payment_amount` DECIMAL(16,2) COMMENT '参与某活动某规则支付金额'
) COMMENT '每日活动统计'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dws/dws_activity_info_daycount/'
TBLPROPERTIES ("parquet.compression"="lzo");
2)数据装载
(1)首日装载
with
tmp_order as
(
select
date_format(create_time,'yyyy-MM-dd') dt,
activity_rule_id,
activity_id,
count(*) order_count,
sum(split_activity_amount) order_reduce_amount,
sum(original_amount) order_original_amount,
sum(split_final_amount) order_final_amount
from dwd_order_detail
where activity_id is not null
group by date_format(create_time,'yyyy-MM-dd'),activity_rule_id,activity_id
),
tmp_pay as
(
select
date_format(callback_time,'yyyy-MM-dd') dt,
activity_rule_id,
activity_id,
count(*) payment_count,
sum(split_activity_amount) payment_reduce_amount,
sum(split_final_amount) payment_amount
from
(
select
activity_rule_id,
activity_id,
order_id,
split_activity_amount,
split_final_amount
from dwd_order_detail
where activity_id is not null
)od
join
(
select
order_id,
callback_time
from dwd_payment_info
)pi
on od.order_id=pi.order_id
group by date_format(callback_time,'yyyy-MM-dd'),activity_rule_id,activity_id
)
insert overwrite table dws_activity_info_daycount partition(dt)
select
activity_rule_id,
activity_id,
sum(order_count),
sum(order_reduce_amount),
sum(order_original_amount),
sum(order_final_amount),
sum(payment_count),
sum(payment_reduce_amount),
sum(payment_amount),
dt
from
(
select
dt,
activity_rule_id,
activity_id,
order_count,
order_reduce_amount,
order_original_amount,
order_final_amount,
0 payment_count,
0 payment_reduce_amount,
0 payment_amount
from tmp_order
union all
select
dt,
activity_rule_id,
activity_id,
0 order_count,
0 order_reduce_amount,
0 order_original_amount,
0 order_final_amount,
payment_count,
payment_reduce_amount,
payment_amount
from tmp_pay
)t1
group by dt,activity_rule_id,activity_id;
(2)每日装载
with
tmp_order as
(
select
activity_rule_id,
activity_id,
count(*) order_count,
sum(split_activity_amount) order_reduce_amount,
sum(original_amount) order_original_amount,
sum(split_final_amount) order_final_amount
from dwd_order_detail
where dt='2020-06-15'
and activity_id is not null
group by activity_rule_id,activity_id
),
tmp_pay as
(
select
activity_rule_id,
activity_id,
count(*) payment_count,
sum(split_activity_amount) payment_reduce_amount,
sum(split_final_amount) payment_amount
from dwd_order_detail
where (dt='2020-06-15'
or dt=date_add('2020-06-15',-1))
and activity_id is not null
and order_id in
(
select order_id from dwd_payment_info where dt='2020-06-15'
)
group by activity_rule_id,activity_id
)
insert overwrite table dws_activity_info_daycount partition(dt='2020-06-15')
select
activity_rule_id,
activity_id,
sum(order_count),
sum(order_reduce_amount),
sum(order_original_amount),
sum(order_final_amount),
sum(payment_count),
sum(payment_reduce_amount),
sum(payment_amount)
from
(
select
activity_rule_id,
activity_id,
order_count,
order_reduce_amount,
order_original_amount,
order_final_amount,
0 payment_count,
0 payment_reduce_amount,
0 payment_amount
from tmp_order
union all
select
activity_rule_id,
activity_id,
0 order_count,
0 order_reduce_amount,
0 order_original_amount,
0 order_final_amount,
payment_count,
payment_reduce_amount,
payment_amount
from tmp_pay
)t1
group by activity_rule_id,activity_id;
3)查询加载结果
4.2.6 每日地区统计
1)建表语句
DROP TABLE IF EXISTS dws_area_stats_daycount;
CREATE EXTERNAL TABLE dws_area_stats_daycount(
`province_id` STRING COMMENT '地区编号',
`visit_count` BIGINT COMMENT '访问次数',
`login_count` BIGINT COMMENT '登录次数',
`visitor_count` BIGINT COMMENT '访客人数',
`user_count` BIGINT COMMENT '用户人数',
`order_count` BIGINT COMMENT '下单次数',
`order_original_amount` DECIMAL(16,2) COMMENT '下单原始金额',
`order_final_amount` DECIMAL(16,2) COMMENT '下单最终金额',
`payment_count` BIGINT COMMENT '支付次数',
`payment_amount` DECIMAL(16,2) COMMENT '支付金额',
`refund_order_count` BIGINT COMMENT '退单次数',
`refund_order_amount` DECIMAL(16,2) COMMENT '退单金额',
`refund_payment_count` BIGINT COMMENT '退款次数',
`refund_payment_amount` DECIMAL(16,2) COMMENT '退款金额'
) COMMENT '每日地区统计表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dws/dws_area_stats_daycount/'
TBLPROPERTIES ("parquet.compression"="lzo");
2)数据装载
(1)首日装载
with
tmp_vu as
(
select
dt,
id province_id,
visit_count,
login_count,
visitor_count,
user_count
from
(
select
dt,
area_code,
count(*) visit_count,--访客访问次数
count(user_id) login_count,--用户访问次数,等价于sum(if(user_id is not null,1,0))
count(distinct(mid_id)) visitor_count,--访客人数
count(distinct(user_id)) user_count--用户人数
from dwd_page_log
where last_page_id is null
group by dt,area_code
)tmp
left join dim_base_province area
on tmp.area_code=area.area_code
),
tmp_order as
(
select
date_format(create_time,'yyyy-MM-dd') dt,
province_id,
count(*) order_count,
sum(original_amount) order_original_amount,
sum(final_amount) order_final_amount
from dwd_order_info
group by date_format(create_time,'yyyy-MM-dd'),province_id
),
tmp_pay as
(
select
date_format(callback_time,'yyyy-MM-dd') dt,
province_id,
count(*) payment_count,
sum(payment_amount) payment_amount
from dwd_payment_info
group by date_format(callback_time,'yyyy-MM-dd'),province_id
),
tmp_ro as
(
select
date_format(create_time,'yyyy-MM-dd') dt,
province_id,
count(*) refund_order_count,
sum(refund_amount) refund_order_amount
from dwd_order_refund_info
group by date_format(create_time,'yyyy-MM-dd'),province_id
),
tmp_rp as
(
select
date_format(callback_time,'yyyy-MM-dd') dt,
province_id,
count(*) refund_payment_count,
sum(refund_amount) refund_payment_amount
from dwd_refund_payment
group by date_format(callback_time,'yyyy-MM-dd'),province_id
)
insert overwrite table dws_area_stats_daycount partition(dt)
select
province_id,
sum(visit_count),
sum(login_count),
sum(visitor_count),
sum(user_count),
sum(order_count),
sum(order_original_amount),
sum(order_final_amount),
sum(payment_count),
sum(payment_amount),
sum(refund_order_count),
sum(refund_order_amount),
sum(refund_payment_count),
sum(refund_payment_amount),
dt
from
(
select
dt,
province_id,
visit_count,
login_count,
visitor_count,
user_count,
0 order_count,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
0 payment_amount,
0 refund_order_count,
0 refund_order_amount,
0 refund_payment_count,
0 refund_payment_amount
from tmp_vu
union all
select
dt,
province_id,
0 visit_count,
0 login_count,
0 visitor_count,
0 user_count,
order_count,
order_original_amount,
order_final_amount,
0 payment_count,
0 payment_amount,
0 refund_order_count,
0 refund_order_amount,
0 refund_payment_count,
0 refund_payment_amount
from tmp_order
union all
select
dt,
province_id,
0 visit_count,
0 login_count,
0 visitor_count,
0 user_count,
0 order_count,
0 order_original_amount,
0 order_final_amount,
payment_count,
payment_amount,
0 refund_order_count,
0 refund_order_amount,
0 refund_payment_count,
0 refund_payment_amount
from tmp_pay
union all
select
dt,
province_id,
0 visit_count,
0 login_count,
0 visitor_count,
0 user_count,
0 order_count,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
0 payment_amount,
refund_order_count,
refund_order_amount,
0 refund_payment_count,
0 refund_payment_amount
from tmp_ro
union all
select
dt,
province_id,
0 visit_count,
0 login_count,
0 visitor_count,
0 user_count,
0 order_count,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
0 payment_amount,
0 refund_order_count,
0 refund_order_amount,
refund_payment_count,
refund_payment_amount
from tmp_rp
)t1
group by dt,province_id;
(2)每日装载
with
tmp_vu as
(
select
id province_id,
visit_count,
login_count,
visitor_count,
user_count
from
(
select
area_code,
count(*) visit_count,--访客访问次数
count(user_id) login_count,--用户访问次数,等价于sum(if(user_id is not null,1,0))
count(distinct(mid_id)) visitor_count,--访客人数
count(distinct(user_id)) user_count--用户人数
from dwd_page_log
where dt='2020-06-15'
and last_page_id is null
group by area_code
)tmp
left join dim_base_province area
on tmp.area_code=area.area_code
),
tmp_order as
(
select
province_id,
count(*) order_count,
sum(original_amount) order_original_amount,
sum(final_amount) order_final_amount
from dwd_order_info
where dt='2020-06-15'
or dt='9999-99-99'
and date_format(create_time,'yyyy-MM-dd')='2020-06-15'
group by province_id
),
tmp_pay as
(
select
province_id,
count(*) payment_count,
sum(payment_amount) payment_amount
from dwd_payment_info
where dt='2020-06-15'
group by province_id
),
tmp_ro as
(
select
province_id,
count(*) refund_order_count,
sum(refund_amount) refund_order_amount
from dwd_order_refund_info
where dt='2020-06-15'
group by province_id
),
tmp_rp as
(
select
province_id,
count(*) refund_payment_count,
sum(refund_amount) refund_payment_amount
from dwd_refund_payment
where dt='2020-06-15'
group by province_id
)
insert overwrite table dws_area_stats_daycount partition(dt='2020-06-15')
select
province_id,
sum(visit_count),
sum(login_count),
sum(visitor_count),
sum(user_count),
sum(order_count),
sum(order_original_amount),
sum(order_final_amount),
sum(payment_count),
sum(payment_amount),
sum(refund_order_count),
sum(refund_order_amount),
sum(refund_payment_count),
sum(refund_payment_amount)
from
(
select
province_id,
visit_count,
login_count,
visitor_count,
user_count,
0 order_count,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
0 payment_amount,
0 refund_order_count,
0 refund_order_amount,
0 refund_payment_count,
0 refund_payment_amount
from tmp_vu
union all
select
province_id,
0 visit_count,
0 login_count,
0 visitor_count,
0 user_count,
order_count,
order_original_amount,
order_final_amount,
0 payment_count,
0 payment_amount,
0 refund_order_count,
0 refund_order_amount,
0 refund_payment_count,
0 refund_payment_amount
from tmp_order
union all
select
province_id,
0 visit_count,
0 login_count,
0 visitor_count,
0 user_count,
0 order_count,
0 order_original_amount,
0 order_final_amount,
payment_count,
payment_amount,
0 refund_order_count,
0 refund_order_amount,
0 refund_payment_count,
0 refund_payment_amount
from tmp_pay
union all
select
province_id,
0 visit_count,
0 login_count,
0 visitor_count,
0 user_count,
0 order_count,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
0 payment_amount,
refund_order_count,
refund_order_amount,
0 refund_payment_count,
0 refund_payment_amount
from tmp_ro
union all
select
province_id,
0 visit_count,
0 login_count,
0 visitor_count,
0 user_count,
0 order_count,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
0 payment_amount,
0 refund_order_count,
0 refund_order_amount,
refund_payment_count,
refund_payment_amount
from tmp_rp
)t1
group by province_id;
3)查询加载结果
4.3 DWS层首日数据装载脚本
1)编写脚本
(1)在/home/atguigu/bin目录下创建脚本dwd_to_dws_init.sh
#!/bin/bash
APP=gmall
if [ -n "$2" ] ;then
do_date=$2
else
echo "请传入日期参数"
exit
fi
dws_visitor_action_daycount="
insert overwrite table ${APP}.dws_visitor_action_daycount partition(dt='$do_date')
select
t1.mid_id,
t1.brand,
t1.model,
t1.is_new,
t1.channel,
t1.os,
t1.area_code,
t1.version_code,
t1.visit_count,
t3.page_stats
from
(
select
mid_id,
brand,
model,
if(array_contains(collect_set(is_new),'0'),'0','1') is_new,--ods_page_log中,同一天内,同一设备的is_new字段,可能全部为1,可能全部为0,也可能部分为0,部分为1(卸载重装),故做该处理
collect_set(channel) channel,
collect_set(os) os,
collect_set(area_code) area_code,
collect_set(version_code) version_code,
sum(if(last_page_id is null,1,0)) visit_count
from ${APP}.dwd_page_log
where dt='$do_date'
and last_page_id is null
group by mid_id,model,brand
)t1
join
(
select
mid_id,
brand,
model,
collect_set(named_struct('page_id',page_id,'page_count',page_count,'during_time',during_time)) page_stats
from
(
select
mid_id,
brand,
model,
page_id,
count(*) page_count,
sum(during_time) during_time
from ${APP}.dwd_page_log
where dt='$do_date'
group by mid_id,model,brand,page_id
)t2
group by mid_id,model,brand
)t3
on t1.mid_id=t3.mid_id
and t1.brand=t3.brand
and t1.model=t3.model;
"
dws_area_stats_daycount="
set hive.exec.dynamic.partition.mode=nonstrict;
with
tmp_vu as
(
select
dt,
id province_id,
visit_count,
login_count,
visitor_count,
user_count
from
(
select
dt,
area_code,
count(*) visit_count,--访客访问次数
count(user_id) login_count,--用户访问次数,等价于sum(if(user_id is not null,1,0))
count(distinct(mid_id)) visitor_count,--访客人数
count(distinct(user_id)) user_count--用户人数
from ${APP}.dwd_page_log
where last_page_id is null
group by dt,area_code
)tmp
left join ${APP}.dim_base_province area
on tmp.area_code=area.area_code
),
tmp_order as
(
select
date_format(create_time,'yyyy-MM-dd') dt,
province_id,
count(*) order_count,
sum(original_amount) order_original_amount,
sum(final_amount) order_final_amount
from ${APP}.dwd_order_info
group by date_format(create_time,'yyyy-MM-dd'),province_id
),
tmp_pay as
(
select
date_format(callback_time,'yyyy-MM-dd') dt,
province_id,
count(*) payment_count,
sum(payment_amount) payment_amount
from ${APP}.dwd_payment_info
group by date_format(callback_time,'yyyy-MM-dd'),province_id
),
tmp_ro as
(
select
date_format(create_time,'yyyy-MM-dd') dt,
province_id,
count(*) refund_order_count,
sum(refund_amount) refund_order_amount
from ${APP}.dwd_order_refund_info
group by date_format(create_time,'yyyy-MM-dd'),province_id
),
tmp_rp as
(
select
date_format(callback_time,'yyyy-MM-dd') dt,
province_id,
count(*) refund_payment_count,
sum(refund_amount) refund_payment_amount
from ${APP}.dwd_refund_payment
group by date_format(callback_time,'yyyy-MM-dd'),province_id
)
insert overwrite table ${APP}.dws_area_stats_daycount partition(dt)
select
province_id,
sum(visit_count),
sum(login_count),
sum(visitor_count),
sum(user_count),
sum(order_count),
sum(order_original_amount),
sum(order_final_amount),
sum(payment_count),
sum(payment_amount),
sum(refund_order_count),
sum(refund_order_amount),
sum(refund_payment_count),
sum(refund_payment_amount),
dt
from
(
select
dt,
province_id,
visit_count,
login_count,
visitor_count,
user_count,
0 order_count,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
0 payment_amount,
0 refund_order_count,
0 refund_order_amount,
0 refund_payment_count,
0 refund_payment_amount
from tmp_vu
union all
select
dt,
province_id,
0 visit_count,
0 login_count,
0 visitor_count,
0 user_count,
order_count,
order_original_amount,
order_final_amount,
0 payment_count,
0 payment_amount,
0 refund_order_count,
0 refund_order_amount,
0 refund_payment_count,
0 refund_payment_amount
from tmp_order
union all
select
dt,
province_id,
0 visit_count,
0 login_count,
0 visitor_count,
0 user_count,
0 order_count,
0 order_original_amount,
0 order_final_amount,
payment_count,
payment_amount,
0 refund_order_count,
0 refund_order_amount,
0 refund_payment_count,
0 refund_payment_amount
from tmp_pay
union all
select
dt,
province_id,
0 visit_count,
0 login_count,
0 visitor_count,
0 user_count,
0 order_count,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
0 payment_amount,
refund_order_count,
refund_order_amount,
0 refund_payment_count,
0 refund_payment_amount
from tmp_ro
union all
select
dt,
province_id,
0 visit_count,
0 login_count,
0 visitor_count,
0 user_count,
0 order_count,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
0 payment_amount,
0 refund_order_count,
0 refund_order_amount,
refund_payment_count,
refund_payment_amount
from tmp_rp
)t1
group by dt,province_id;
"
dws_user_action_daycount="
set hive.exec.dynamic.partition.mode=nonstrict;
with
tmp_login as
(
select
dt,
user_id,
count(*) login_count
from ${APP}.dwd_page_log
where user_id is not null
and last_page_id is null
group by dt,user_id
),
tmp_cf as
(
select
dt,
user_id,
sum(if(action_id='cart_add',1,0)) cart_count,
sum(if(action_id='favor_add',1,0)) favor_count
from ${APP}.dwd_action_log
where user_id is not null
and action_id in ('cart_add','favor_add')
group by dt,user_id
),
tmp_order as
(
select
date_format(create_time,'yyyy-MM-dd') dt,
user_id,
count(*) order_count,
sum(if(activity_reduce_amount>0,1,0)) order_activity_count,
sum(if(coupon_reduce_amount>0,1,0)) order_coupon_count,
sum(activity_reduce_amount) order_activity_reduce_amount,
sum(coupon_reduce_amount) order_coupon_reduce_amount,
sum(original_amount) order_original_amount,
sum(final_amount) order_final_amount
from ${APP}.dwd_order_info
group by date_format(create_time,'yyyy-MM-dd'),user_id
),
tmp_pay as
(
select
date_format(callback_time,'yyyy-MM-dd') dt,
user_id,
count(*) payment_count,
sum(payment_amount) payment_amount
from ${APP}.dwd_payment_info
group by date_format(callback_time,'yyyy-MM-dd'),user_id
),
tmp_ri as
(
select
date_format(create_time,'yyyy-MM-dd') dt,
user_id,
count(*) refund_order_count,
sum(refund_num) refund_order_num,
sum(refund_amount) refund_order_amount
from ${APP}.dwd_order_refund_info
group by date_format(create_time,'yyyy-MM-dd'),user_id
),
tmp_rp as
(
select
date_format(callback_time,'yyyy-MM-dd') dt,
rp.user_id,
count(*) refund_payment_count,
sum(ri.refund_num) refund_payment_num,
sum(rp.refund_amount) refund_payment_amount
from
(
select
user_id,
order_id,
sku_id,
refund_amount,
callback_time
from ${APP}.dwd_refund_payment
)rp
left join
(
select
user_id,
order_id,
sku_id,
refund_num
from ${APP}.dwd_order_refund_info
)ri
on rp.order_id=ri.order_id
and rp.sku_id=rp.sku_id
group by date_format(callback_time,'yyyy-MM-dd'),rp.user_id
),
tmp_coupon as
(
select
coalesce(coupon_get.dt,coupon_using.dt,coupon_used.dt) dt,
coalesce(coupon_get.user_id,coupon_using.user_id,coupon_used.user_id) user_id,
nvl(coupon_get_count,0) coupon_get_count,
nvl(coupon_using_count,0) coupon_using_count,
nvl(coupon_used_count,0) coupon_used_count
from
(
select
date_format(get_time,'yyyy-MM-dd') dt,
user_id,
count(*) coupon_get_count
from ${APP}.dwd_coupon_use
where get_time is not null
group by user_id,date_format(get_time,'yyyy-MM-dd')
)coupon_get
full outer join
(
select
date_format(using_time,'yyyy-MM-dd') dt,
user_id,
count(*) coupon_using_count
from ${APP}.dwd_coupon_use
where using_time is not null
group by user_id,date_format(using_time,'yyyy-MM-dd')
)coupon_using
on coupon_get.dt=coupon_using.dt
and coupon_get.user_id=coupon_using.user_id
full outer join
(
select
date_format(used_time,'yyyy-MM-dd') dt,
user_id,
count(*) coupon_used_count
from ${APP}.dwd_coupon_use
where used_time is not null
group by user_id,date_format(used_time,'yyyy-MM-dd')
)coupon_used
on nvl(coupon_get.dt,coupon_using.dt)=coupon_used.dt
and nvl(coupon_get.user_id,coupon_using.user_id)=coupon_used.user_id
),
tmp_comment as
(
select
date_format(create_time,'yyyy-MM-dd') dt,
user_id,
sum(if(appraise='1201',1,0)) appraise_good_count,
sum(if(appraise='1202',1,0)) appraise_mid_count,
sum(if(appraise='1203',1,0)) appraise_bad_count,
sum(if(appraise='1204',1,0)) appraise_default_count
from ${APP}.dwd_comment_info
group by date_format(create_time,'yyyy-MM-dd'),user_id
),
tmp_od as
(
select
dt,
user_id,
collect_set(named_struct('sku_id',sku_id,'sku_num',sku_num,'order_count',order_count,'activity_reduce_amount',activity_reduce_amount,'coupon_reduce_amount',coupon_reduce_amount,'original_amount',original_amount,'final_amount',final_amount)) order_detail_stats
from
(
select
date_format(create_time,'yyyy-MM-dd') dt,
user_id,
sku_id,
sum(sku_num) sku_num,
count(*) order_count,
cast(sum(split_activity_amount) as decimal(16,2)) activity_reduce_amount,
cast(sum(split_coupon_amount) as decimal(16,2)) coupon_reduce_amount,
cast(sum(original_amount) as decimal(16,2)) original_amount,
cast(sum(split_final_amount) as decimal(16,2)) final_amount
from ${APP}.dwd_order_detail
group by date_format(create_time,'yyyy-MM-dd'),user_id,sku_id
)t1
group by dt,user_id
)
insert overwrite table ${APP}.dws_user_action_daycount partition(dt)
select
coalesce(tmp_login.user_id,tmp_cf.user_id,tmp_order.user_id,tmp_pay.user_id,tmp_ri.user_id,tmp_rp.user_id,tmp_comment.user_id,tmp_coupon.user_id,tmp_od.user_id),
nvl(login_count,0),
nvl(cart_count,0),
nvl(favor_count,0),
nvl(order_count,0),
nvl(order_activity_count,0),
nvl(order_activity_reduce_amount,0),
nvl(order_coupon_count,0),
nvl(order_coupon_reduce_amount,0),
nvl(order_original_amount,0),
nvl(order_final_amount,0),
nvl(payment_count,0),
nvl(payment_amount,0),
nvl(refund_order_count,0),
nvl(refund_order_num,0),
nvl(refund_order_amount,0),
nvl(refund_payment_count,0),
nvl(refund_payment_num,0),
nvl(refund_payment_amount,0),
nvl(coupon_get_count,0),
nvl(coupon_using_count,0),
nvl(coupon_used_count,0),
nvl(appraise_good_count,0),
nvl(appraise_mid_count,0),
nvl(appraise_bad_count,0),
nvl(appraise_default_count,0),
order_detail_stats,
coalesce(tmp_login.dt,tmp_cf.dt,tmp_order.dt,tmp_pay.dt,tmp_ri.dt,tmp_rp.dt,tmp_comment.dt,tmp_coupon.dt,tmp_od.dt)
from tmp_login
full outer join tmp_cf
on tmp_login.user_id=tmp_cf.user_id
and tmp_login.dt=tmp_cf.dt
full outer join tmp_order
on coalesce(tmp_login.user_id,tmp_cf.user_id)=tmp_order.user_id
and coalesce(tmp_login.dt,tmp_cf.dt)=tmp_order.dt
full outer join tmp_pay
on coalesce(tmp_login.user_id,tmp_cf.user_id,tmp_order.user_id)=tmp_pay.user_id
and coalesce(tmp_login.dt,tmp_cf.dt,tmp_order.dt)=tmp_pay.dt
full outer join tmp_ri
on coalesce(tmp_login.user_id,tmp_cf.user_id,tmp_order.user_id,tmp_pay.user_id)=tmp_ri.user_id
and coalesce(tmp_login.dt,tmp_cf.dt,tmp_order.dt,tmp_pay.dt)=tmp_ri.dt
full outer join tmp_rp
on coalesce(tmp_login.user_id,tmp_cf.user_id,tmp_order.user_id,tmp_pay.user_id,tmp_ri.user_id)=tmp_rp.user_id
and coalesce(tmp_login.dt,tmp_cf.dt,tmp_order.dt,tmp_pay.dt,tmp_ri.dt)=tmp_rp.dt
full outer join tmp_comment
on coalesce(tmp_login.user_id,tmp_cf.user_id,tmp_order.user_id,tmp_pay.user_id,tmp_ri.user_id,tmp_rp.user_id)=tmp_comment.user_id
and coalesce(tmp_login.dt,tmp_cf.dt,tmp_order.dt,tmp_pay.dt,tmp_ri.dt,tmp_rp.dt)=tmp_comment.dt
full outer join tmp_coupon
on coalesce(tmp_login.user_id,tmp_cf.user_id,tmp_order.user_id,tmp_pay.user_id,tmp_ri.user_id,tmp_rp.user_id,tmp_comment.user_id)=tmp_coupon.user_id
and coalesce(tmp_login.dt,tmp_cf.dt,tmp_order.dt,tmp_pay.dt,tmp_ri.dt,tmp_rp.dt,tmp_comment.dt)=tmp_coupon.dt
full outer join tmp_od
on coalesce(tmp_login.user_id,tmp_cf.user_id,tmp_order.user_id,tmp_pay.user_id,tmp_ri.user_id,tmp_rp.user_id,tmp_comment.user_id,tmp_coupon.user_id)=tmp_od.user_id
and coalesce(tmp_login.dt,tmp_cf.dt,tmp_order.dt,tmp_pay.dt,tmp_ri.dt,tmp_rp.dt,tmp_comment.dt,tmp_coupon.dt)=tmp_od.dt;
"
dws_activity_info_daycount="
set hive.exec.dynamic.partition.mode=nonstrict;
with
tmp_order as
(
select
date_format(create_time,'yyyy-MM-dd') dt,
activity_rule_id,
activity_id,
count(*) order_count,
sum(split_activity_amount) order_reduce_amount,
sum(original_amount) order_original_amount,
sum(split_final_amount) order_final_amount
from ${APP}.dwd_order_detail
where activity_id is not null
group by date_format(create_time,'yyyy-MM-dd'),activity_rule_id,activity_id
),
tmp_pay as
(
select
date_format(callback_time,'yyyy-MM-dd') dt,
activity_rule_id,
activity_id,
count(*) payment_count,
sum(split_activity_amount) payment_reduce_amount,
sum(split_final_amount) payment_amount
from
(
select
activity_rule_id,
activity_id,
order_id,
split_activity_amount,
split_final_amount
from ${APP}.dwd_order_detail
where activity_id is not null
)od
join
(
select
order_id,
callback_time
from ${APP}.dwd_payment_info
)pi
on od.order_id=pi.order_id
group by date_format(callback_time,'yyyy-MM-dd'),activity_rule_id,activity_id
)
insert overwrite table ${APP}.dws_activity_info_daycount partition(dt)
select
activity_rule_id,
activity_id,
sum(order_count),
sum(order_reduce_amount),
sum(order_original_amount),
sum(order_final_amount),
sum(payment_count),
sum(payment_reduce_amount),
sum(payment_amount),
dt
from
(
select
dt,
activity_rule_id,
activity_id,
order_count,
order_reduce_amount,
order_original_amount,
order_final_amount,
0 payment_count,
0 payment_reduce_amount,
0 payment_amount
from tmp_order
union all
select
dt,
activity_rule_id,
activity_id,
0 order_count,
0 order_reduce_amount,
0 order_original_amount,
0 order_final_amount,
payment_count,
payment_reduce_amount,
payment_amount
from tmp_pay
)t1
group by dt,activity_rule_id,activity_id;"
dws_sku_action_daycount="
set hive.exec.dynamic.partition.mode=nonstrict;
with
tmp_order as
(
select
date_format(create_time,'yyyy-MM-dd') dt,
sku_id,
count(*) order_count,
sum(sku_num) order_num,
sum(if(split_activity_amount>0,1,0)) order_activity_count,
sum(if(split_coupon_amount>0,1,0)) order_coupon_count,
sum(split_activity_amount) order_activity_reduce_amount,
sum(split_coupon_amount) order_coupon_reduce_amount,
sum(original_amount) order_original_amount,
sum(split_final_amount) order_final_amount
from ${APP}.dwd_order_detail
group by date_format(create_time,'yyyy-MM-dd'),sku_id
),
tmp_pay as
(
select
date_format(callback_time,'yyyy-MM-dd') dt,
sku_id,
count(*) payment_count,
sum(sku_num) payment_num,
sum(split_final_amount) payment_amount
from ${APP}.dwd_order_detail od
join
(
select
order_id,
callback_time
from ${APP}.dwd_payment_info
where callback_time is not null
)pi on pi.order_id=od.order_id
group by date_format(callback_time,'yyyy-MM-dd'),sku_id
),
tmp_ri as
(
select
date_format(create_time,'yyyy-MM-dd') dt,
sku_id,
count(*) refund_order_count,
sum(refund_num) refund_order_num,
sum(refund_amount) refund_order_amount
from ${APP}.dwd_order_refund_info
group by date_format(create_time,'yyyy-MM-dd'),sku_id
),
tmp_rp as
(
select
date_format(callback_time,'yyyy-MM-dd') dt,
rp.sku_id,
count(*) refund_payment_count,
sum(ri.refund_num) refund_payment_num,
sum(refund_amount) refund_payment_amount
from
(
select
order_id,
sku_id,
refund_amount,
callback_time
from ${APP}.dwd_refund_payment
)rp
left join
(
select
order_id,
sku_id,
refund_num
from ${APP}.dwd_order_refund_info
)ri
on rp.order_id=ri.order_id
and rp.sku_id=ri.sku_id
group by date_format(callback_time,'yyyy-MM-dd'),rp.sku_id
),
tmp_cf as
(
select
dt,
item sku_id,
sum(if(action_id='cart_add',1,0)) cart_count,
sum(if(action_id='favor_add',1,0)) favor_count
from ${APP}.dwd_action_log
where action_id in ('cart_add','favor_add')
group by dt,item
),
tmp_comment as
(
select
date_format(create_time,'yyyy-MM-dd') dt,
sku_id,
sum(if(appraise='1201',1,0)) appraise_good_count,
sum(if(appraise='1202',1,0)) appraise_mid_count,
sum(if(appraise='1203',1,0)) appraise_bad_count,
sum(if(appraise='1204',1,0)) appraise_default_count
from ${APP}.dwd_comment_info
group by date_format(create_time,'yyyy-MM-dd'),sku_id
)
insert overwrite table ${APP}.dws_sku_action_daycount partition(dt)
select
sku_id,
sum(order_count),
sum(order_num),
sum(order_activity_count),
sum(order_coupon_count),
sum(order_activity_reduce_amount),
sum(order_coupon_reduce_amount),
sum(order_original_amount),
sum(order_final_amount),
sum(payment_count),
sum(payment_num),
sum(payment_amount),
sum(refund_order_count),
sum(refund_order_num),
sum(refund_order_amount),
sum(refund_payment_count),
sum(refund_payment_num),
sum(refund_payment_amount),
sum(cart_count),
sum(favor_count),
sum(appraise_good_count),
sum(appraise_mid_count),
sum(appraise_bad_count),
sum(appraise_default_count),
dt
from
(
select
dt,
sku_id,
order_count,
order_num,
order_activity_count,
order_coupon_count,
order_activity_reduce_amount,
order_coupon_reduce_amount,
order_original_amount,
order_final_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_order_count,
0 refund_order_num,
0 refund_order_amount,
0 refund_payment_count,
0 refund_payment_num,
0 refund_payment_amount,
0 cart_count,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_order
union all
select
dt,
sku_id,
0 order_count,
0 order_num,
0 order_activity_count,
0 order_coupon_count,
0 order_activity_reduce_amount,
0 order_coupon_reduce_amount,
0 order_original_amount,
0 order_final_amount,
payment_count,
payment_num,
payment_amount,
0 refund_order_count,
0 refund_order_num,
0 refund_order_amount,
0 refund_payment_count,
0 refund_payment_num,
0 refund_payment_amount,
0 cart_count,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_pay
union all
select
dt,
sku_id,
0 order_count,
0 order_num,
0 order_activity_count,
0 order_coupon_count,
0 order_activity_reduce_amount,
0 order_coupon_reduce_amount,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
refund_order_count,
refund_order_num,
refund_order_amount,
0 refund_payment_count,
0 refund_payment_num,
0 refund_payment_amount,
0 cart_count,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_ri
union all
select
dt,
sku_id,
0 order_count,
0 order_num,
0 order_activity_count,
0 order_coupon_count,
0 order_activity_reduce_amount,
0 order_coupon_reduce_amount,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_order_count,
0 refund_order_num,
0 refund_order_amount,
refund_payment_count,
refund_payment_num,
refund_payment_amount,
0 cart_count,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_rp
union all
select
dt,
sku_id,
0 order_count,
0 order_num,
0 order_activity_count,
0 order_coupon_count,
0 order_activity_reduce_amount,
0 order_coupon_reduce_amount,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_order_count,
0 refund_order_num,
0 refund_order_amount,
0 refund_payment_count,
0 refund_payment_num,
0 refund_payment_amount,
cart_count,
favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_cf
union all
select
dt,
sku_id,
0 order_count,
0 order_num,
0 order_activity_count,
0 order_coupon_count,
0 order_activity_reduce_amount,
0 order_coupon_reduce_amount,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_order_count,
0 refund_order_num,
0 refund_order_amount,
0 refund_payment_count,
0 refund_payment_num,
0 refund_payment_amount,
0 cart_count,
0 favor_count,
appraise_good_count,
appraise_mid_count,
appraise_bad_count,
appraise_default_count
from tmp_comment
)t1
group by dt,sku_id;"
dws_coupon_info_daycount="
set hive.exec.dynamic.partition.mode=nonstrict;
with
tmp_cu as
(
select
coalesce(coupon_get.dt,coupon_using.dt,coupon_used.dt,coupon_exprie.dt) dt,
coalesce(coupon_get.coupon_id,coupon_using.coupon_id,coupon_used.coupon_id,coupon_exprie.coupon_id) coupon_id,
nvl(get_count,0) get_count,
nvl(order_count,0) order_count,
nvl(payment_count,0) payment_count,
nvl(expire_count,0) expire_count
from
(
select
date_format(get_time,'yyyy-MM-dd') dt,
coupon_id,
count(*) get_count
from ${APP}.dwd_coupon_use
group by date_format(get_time,'yyyy-MM-dd'),coupon_id
)coupon_get
full outer join
(
select
date_format(using_time,'yyyy-MM-dd') dt,
coupon_id,
count(*) order_count
from ${APP}.dwd_coupon_use
where using_time is not null
group by date_format(using_time,'yyyy-MM-dd'),coupon_id
)coupon_using
on coupon_get.dt=coupon_using.dt
and coupon_get.coupon_id=coupon_using.coupon_id
full outer join
(
select
date_format(used_time,'yyyy-MM-dd') dt,
coupon_id,
count(*) payment_count
from ${APP}.dwd_coupon_use
where used_time is not null
group by date_format(used_time,'yyyy-MM-dd'),coupon_id
)coupon_used
on nvl(coupon_get.dt,coupon_using.dt)=coupon_used.dt
and nvl(coupon_get.coupon_id,coupon_using.coupon_id)=coupon_used.coupon_id
full outer join
(
select
date_format(expire_time,'yyyy-MM-dd') dt,
coupon_id,
count(*) expire_count
from ${APP}.dwd_coupon_use
where expire_time is not null
group by date_format(expire_time,'yyyy-MM-dd'),coupon_id
)coupon_exprie
on coalesce(coupon_get.dt,coupon_using.dt,coupon_used.dt)=coupon_exprie.dt
and coalesce(coupon_get.coupon_id,coupon_using.coupon_id,coupon_used.coupon_id)=coupon_exprie.coupon_id
),
tmp_order as
(
select
date_format(create_time,'yyyy-MM-dd') dt,
coupon_id,
sum(split_coupon_amount) order_reduce_amount,
sum(original_amount) order_original_amount,
sum(split_final_amount) order_final_amount
from ${APP}.dwd_order_detail
where coupon_id is not null
group by date_format(create_time,'yyyy-MM-dd'),coupon_id
),
tmp_pay as
(
select
date_format(callback_time,'yyyy-MM-dd') dt,
coupon_id,
sum(split_coupon_amount) payment_reduce_amount,
sum(split_final_amount) payment_amount
from
(
select
order_id,
coupon_id,
split_coupon_amount,
split_final_amount
from ${APP}.dwd_order_detail
where coupon_id is not null
)od
join
(
select
order_id,
callback_time
from ${APP}.dwd_payment_info
)pi
on od.order_id=pi.order_id
group by date_format(callback_time,'yyyy-MM-dd'),coupon_id
)
insert overwrite table ${APP}.dws_coupon_info_daycount partition(dt)
select
coupon_id,
sum(get_count),
sum(order_count),
sum(order_reduce_amount),
sum(order_original_amount),
sum(order_final_amount),
sum(payment_count),
sum(payment_reduce_amount),
sum(payment_amount),
sum(expire_count),
dt
from
(
select
dt,
coupon_id,
get_count,
order_count,
0 order_reduce_amount,
0 order_original_amount,
0 order_final_amount,
payment_count,
0 payment_reduce_amount,
0 payment_amount,
expire_count
from tmp_cu
union all
select
dt,
coupon_id,
0 get_count,
0 order_count,
order_reduce_amount,
order_original_amount,
order_final_amount,
0 payment_count,
0 payment_reduce_amount,
0 payment_amount,
0 expire_count
from tmp_order
union all
select
dt,
coupon_id,
0 get_count,
0 order_count,
0 order_reduce_amount,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
payment_reduce_amount,
payment_amount,
0 expire_count
from tmp_pay
)t1
group by dt,coupon_id;
"
case $1 in
"dws_visitor_action_daycount" )
hive -e "$dws_visitor_action_daycount"
;;
"dws_user_action_daycount" )
hive -e "$dws_user_action_daycount"
;;
"dws_activity_info_daycount" )
hive -e "$dws_activity_info_daycount"
;;
"dws_area_stats_daycount" )
hive -e "$dws_area_stats_daycount"
;;
"dws_sku_action_daycount" )
hive -e "$dws_sku_action_daycount"
;;
"dws_coupon_info_daycount" )
hive -e "$dws_coupon_info_daycount"
;;
"all" )
hive -e "$dws_visitor_action_daycount$dws_user_action_daycount$dws_activity_info_daycount$dws_area_stats_daycount$dws_sku_action_daycount$dws_coupon_info_daycount"
;;
esac
(2)增加执行权限
[atguigu@hadoop102 bin]$ chmod +x dwd_to_dws_init.sh
2)脚本使用
(1)执行脚本
[atguigu@hadoop102 bin]$ dwd_to_dws_init.sh all 2020-06-14
(2)查看数据是否导入成功
4.4 DWS层每日数据装载脚本
1)编写脚本
(1)在/home/atguigu/bin目录下创建脚本dwd_to_dws.sh
#!/bin/bash
APP=gmall
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$2" ] ;then
do_date=$2
else
do_date=`date -d "-1 day" +%F`
fi
dws_visitor_action_daycount="insert overwrite table ${APP}.dws_visitor_action_daycount partition(dt='$do_date')
select
t1.mid_id,
t1.brand,
t1.model,
t1.is_new,
t1.channel,
t1.os,
t1.area_code,
t1.version_code,
t1.visit_count,
t3.page_stats
from
(
select
mid_id,
brand,
model,
if(array_contains(collect_set(is_new),'0'),'0','1') is_new,--ods_page_log中,同一天内,同一设备的is_new字段,可能全部为1,可能全部为0,也可能部分为0,部分为1(卸载重装),故做该处理
collect_set(channel) channel,
collect_set(os) os,
collect_set(area_code) area_code,
collect_set(version_code) version_code,
sum(if(last_page_id is null,1,0)) visit_count
from ${APP}.dwd_page_log
where dt='$do_date'
and last_page_id is null
group by mid_id,model,brand
)t1
join
(
select
mid_id,
brand,
model,
collect_set(named_struct('page_id',page_id,'page_count',page_count,'during_time',during_time)) page_stats
from
(
select
mid_id,
brand,
model,
page_id,
count(*) page_count,
sum(during_time) during_time
from ${APP}.dwd_page_log
where dt='$do_date'
group by mid_id,model,brand,page_id
)t2
group by mid_id,model,brand
)t3
on t1.mid_id=t3.mid_id
and t1.brand=t3.brand
and t1.model=t3.model;"
dws_user_action_daycount="
with
tmp_login as
(
select
user_id,
count(*) login_count
from ${APP}.dwd_page_log
where dt='$do_date'
and user_id is not null
and last_page_id is null
group by user_id
),
tmp_cf as
(
select
user_id,
sum(if(action_id='cart_add',1,0)) cart_count,
sum(if(action_id='favor_add',1,0)) favor_count
from ${APP}.dwd_action_log
where dt='$do_date'
and user_id is not null
and action_id in ('cart_add','favor_add')
group by user_id
),
tmp_order as
(
select
user_id,
count(*) order_count,
sum(if(activity_reduce_amount>0,1,0)) order_activity_count,
sum(if(coupon_reduce_amount>0,1,0)) order_coupon_count,
sum(activity_reduce_amount) order_activity_reduce_amount,
sum(coupon_reduce_amount) order_coupon_reduce_amount,
sum(original_amount) order_original_amount,
sum(final_amount) order_final_amount
from ${APP}.dwd_order_info
where (dt='$do_date'
or dt='9999-99-99')
and date_format(create_time,'yyyy-MM-dd')='$do_date'
group by user_id
),
tmp_pay as
(
select
user_id,
count(*) payment_count,
sum(payment_amount) payment_amount
from ${APP}.dwd_payment_info
where dt='$do_date'
group by user_id
),
tmp_ri as
(
select
user_id,
count(*) refund_order_count,
sum(refund_num) refund_order_num,
sum(refund_amount) refund_order_amount
from ${APP}.dwd_order_refund_info
where dt='$do_date'
group by user_id
),
tmp_rp as
(
select
rp.user_id,
count(*) refund_payment_count,
sum(ri.refund_num) refund_payment_num,
sum(rp.refund_amount) refund_payment_amount
from
(
select
user_id,
order_id,
sku_id,
refund_amount
from ${APP}.dwd_refund_payment
where dt='$do_date'
)rp
left join
(
select
user_id,
order_id,
sku_id,
refund_num
from ${APP}.dwd_order_refund_info
where dt>=date_add('$do_date',-15)
)ri
on rp.order_id=ri.order_id
and rp.sku_id=rp.sku_id
group by rp.user_id
),
tmp_coupon as
(
select
user_id,
sum(if(date_format(get_time,'yyyy-MM-dd')='$do_date',1,0)) coupon_get_count,
sum(if(date_format(using_time,'yyyy-MM-dd')='$do_date',1,0)) coupon_using_count,
sum(if(date_format(used_time,'yyyy-MM-dd')='$do_date',1,0)) coupon_used_count
from ${APP}.dwd_coupon_use
where (dt='$do_date' or dt='9999-99-99')
and (date_format(get_time, 'yyyy-MM-dd') = '$do_date'
or date_format(using_time,'yyyy-MM-dd')='$do_date'
or date_format(used_time,'yyyy-MM-dd')='$do_date')
group by user_id
),
tmp_comment as
(
select
user_id,
sum(if(appraise='1201',1,0)) appraise_good_count,
sum(if(appraise='1202',1,0)) appraise_mid_count,
sum(if(appraise='1203',1,0)) appraise_bad_count,
sum(if(appraise='1204',1,0)) appraise_default_count
from ${APP}.dwd_comment_info
where dt='$do_date'
group by user_id
),
tmp_od as
(
select
user_id,
collect_set(named_struct('sku_id',sku_id,'sku_num',sku_num,'order_count',order_count,'activity_reduce_amount',activity_reduce_amount,'coupon_reduce_amount',coupon_reduce_amount,'original_amount',original_amount,'final_amount',final_amount)) order_detail_stats
from
(
select
user_id,
sku_id,
sum(sku_num) sku_num,
count(*) order_count,
cast(sum(split_activity_amount) as decimal(16,2)) activity_reduce_amount,
cast(sum(split_coupon_amount) as decimal(16,2)) coupon_reduce_amount,
cast(sum(original_amount) as decimal(16,2)) original_amount,
cast(sum(split_final_amount) as decimal(16,2)) final_amount
from ${APP}.dwd_order_detail
where dt='$do_date'
group by user_id,sku_id
)t1
group by user_id
)
insert overwrite table ${APP}.dws_user_action_daycount partition(dt='$do_date')
select
coalesce(tmp_login.user_id,tmp_cf.user_id,tmp_order.user_id,tmp_pay.user_id,tmp_ri.user_id,tmp_rp.user_id,tmp_comment.user_id,tmp_coupon.user_id,tmp_od.user_id),
nvl(login_count,0),
nvl(cart_count,0),
nvl(favor_count,0),
nvl(order_count,0),
nvl(order_activity_count,0),
nvl(order_activity_reduce_amount,0),
nvl(order_coupon_count,0),
nvl(order_coupon_reduce_amount,0),
nvl(order_original_amount,0),
nvl(order_final_amount,0),
nvl(payment_count,0),
nvl(payment_amount,0),
nvl(refund_order_count,0),
nvl(refund_order_num,0),
nvl(refund_order_amount,0),
nvl(refund_payment_count,0),
nvl(refund_payment_num,0),
nvl(refund_payment_amount,0),
nvl(coupon_get_count,0),
nvl(coupon_using_count,0),
nvl(coupon_used_count,0),
nvl(appraise_good_count,0),
nvl(appraise_mid_count,0),
nvl(appraise_bad_count,0),
nvl(appraise_default_count,0),
order_detail_stats
from tmp_login
full outer join tmp_cf on tmp_login.user_id=tmp_cf.user_id
full outer join tmp_order on coalesce(tmp_login.user_id,tmp_cf.user_id)=tmp_order.user_id
full outer join tmp_pay on coalesce(tmp_login.user_id,tmp_cf.user_id,tmp_order.user_id)=tmp_pay.user_id
full outer join tmp_ri on coalesce(tmp_login.user_id,tmp_cf.user_id,tmp_order.user_id,tmp_pay.user_id)=tmp_ri.user_id
full outer join tmp_rp on coalesce(tmp_login.user_id,tmp_cf.user_id,tmp_order.user_id,tmp_pay.user_id,tmp_ri.user_id)=tmp_rp.user_id
full outer join tmp_comment on coalesce(tmp_login.user_id,tmp_cf.user_id,tmp_order.user_id,tmp_pay.user_id,tmp_ri.user_id,tmp_rp.user_id)=tmp_comment.user_id
full outer join tmp_coupon on coalesce(tmp_login.user_id,tmp_cf.user_id,tmp_order.user_id,tmp_pay.user_id,tmp_ri.user_id,tmp_rp.user_id,tmp_comment.user_id)=tmp_coupon.user_id
full outer join tmp_od on coalesce(tmp_login.user_id,tmp_cf.user_id,tmp_order.user_id,tmp_pay.user_id,tmp_ri.user_id,tmp_rp.user_id,tmp_comment.user_id,tmp_coupon.user_id)=tmp_od.user_id;
"
dws_activity_info_daycount="
with
tmp_order as
(
select
activity_rule_id,
activity_id,
count(*) order_count,
sum(split_activity_amount) order_reduce_amount,
sum(original_amount) order_original_amount,
sum(split_final_amount) order_final_amount
from ${APP}.dwd_order_detail
where dt='$do_date'
and activity_id is not null
group by activity_rule_id,activity_id
),
tmp_pay as
(
select
activity_rule_id,
activity_id,
count(*) payment_count,
sum(split_activity_amount) payment_reduce_amount,
sum(split_final_amount) payment_amount
from ${APP}.dwd_order_detail
where (dt='$do_date'
or dt=date_add('$do_date',-1))
and activity_id is not null
and order_id in
(
select order_id from ${APP}.dwd_payment_info where dt='$do_date'
)
group by activity_rule_id,activity_id
)
insert overwrite table ${APP}.dws_activity_info_daycount partition(dt='$do_date')
select
activity_rule_id,
activity_id,
sum(order_count),
sum(order_reduce_amount),
sum(order_original_amount),
sum(order_final_amount),
sum(payment_count),
sum(payment_reduce_amount),
sum(payment_amount)
from
(
select
activity_rule_id,
activity_id,
order_count,
order_reduce_amount,
order_original_amount,
order_final_amount,
0 payment_count,
0 payment_reduce_amount,
0 payment_amount
from tmp_order
union all
select
activity_rule_id,
activity_id,
0 order_count,
0 order_reduce_amount,
0 order_original_amount,
0 order_final_amount,
payment_count,
payment_reduce_amount,
payment_amount
from tmp_pay
)t1
group by activity_rule_id,activity_id;"
dws_sku_action_daycount="
with
tmp_order as
(
select
sku_id,
count(*) order_count,
sum(sku_num) order_num,
sum(if(split_activity_amount>0,1,0)) order_activity_count,
sum(if(split_coupon_amount>0,1,0)) order_coupon_count,
sum(split_activity_amount) order_activity_reduce_amount,
sum(split_coupon_amount) order_coupon_reduce_amount,
sum(original_amount) order_original_amount,
sum(split_final_amount) order_final_amount
from ${APP}.dwd_order_detail
where dt='$do_date'
group by sku_id
),
tmp_pay as
(
select
sku_id,
count(*) payment_count,
sum(sku_num) payment_num,
sum(split_final_amount) payment_amount
from ${APP}.dwd_order_detail
where (dt='$do_date'
or dt=date_add('$do_date',-1))
and order_id in
(
select order_id from ${APP}.dwd_payment_info where dt='$do_date'
)
group by sku_id
),
tmp_ri as
(
select
sku_id,
count(*) refund_order_count,
sum(refund_num) refund_order_num,
sum(refund_amount) refund_order_amount
from ${APP}.dwd_order_refund_info
where dt='$do_date'
group by sku_id
),
tmp_rp as
(
select
rp.sku_id,
count(*) refund_payment_count,
sum(ri.refund_num) refund_payment_num,
sum(refund_amount) refund_payment_amount
from
(
select
order_id,
sku_id,
refund_amount
from ${APP}.dwd_refund_payment
where dt='$do_date'
)rp
left join
(
select
order_id,
sku_id,
refund_num
from ${APP}.dwd_order_refund_info
where dt>=date_add('$do_date',-15)
)ri
on rp.order_id=ri.order_id
and rp.sku_id=ri.sku_id
group by rp.sku_id
),
tmp_cf as
(
select
item sku_id,
sum(if(action_id='cart_add',1,0)) cart_count,
sum(if(action_id='favor_add',1,0)) favor_count
from ${APP}.dwd_action_log
where dt='$do_date'
and action_id in ('cart_add','favor_add')
group by item
),
tmp_comment as
(
select
sku_id,
sum(if(appraise='1201',1,0)) appraise_good_count,
sum(if(appraise='1202',1,0)) appraise_mid_count,
sum(if(appraise='1203',1,0)) appraise_bad_count,
sum(if(appraise='1204',1,0)) appraise_default_count
from ${APP}.dwd_comment_info
where dt='$do_date'
group by sku_id
)
insert overwrite table ${APP}.dws_sku_action_daycount partition(dt='$do_date')
select
sku_id,
sum(order_count),
sum(order_num),
sum(order_activity_count),
sum(order_coupon_count),
sum(order_activity_reduce_amount),
sum(order_coupon_reduce_amount),
sum(order_original_amount),
sum(order_final_amount),
sum(payment_count),
sum(payment_num),
sum(payment_amount),
sum(refund_order_count),
sum(refund_order_num),
sum(refund_order_amount),
sum(refund_payment_count),
sum(refund_payment_num),
sum(refund_payment_amount),
sum(cart_count),
sum(favor_count),
sum(appraise_good_count),
sum(appraise_mid_count),
sum(appraise_bad_count),
sum(appraise_default_count)
from
(
select
sku_id,
order_count,
order_num,
order_activity_count,
order_coupon_count,
order_activity_reduce_amount,
order_coupon_reduce_amount,
order_original_amount,
order_final_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_order_count,
0 refund_order_num,
0 refund_order_amount,
0 refund_payment_count,
0 refund_payment_num,
0 refund_payment_amount,
0 cart_count,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_order
union all
select
sku_id,
0 order_count,
0 order_num,
0 order_activity_count,
0 order_coupon_count,
0 order_activity_reduce_amount,
0 order_coupon_reduce_amount,
0 order_original_amount,
0 order_final_amount,
payment_count,
payment_num,
payment_amount,
0 refund_order_count,
0 refund_order_num,
0 refund_order_amount,
0 refund_payment_count,
0 refund_payment_num,
0 refund_payment_amount,
0 cart_count,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_pay
union all
select
sku_id,
0 order_count,
0 order_num,
0 order_activity_count,
0 order_coupon_count,
0 order_activity_reduce_amount,
0 order_coupon_reduce_amount,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
refund_order_count,
refund_order_num,
refund_order_amount,
0 refund_payment_count,
0 refund_payment_num,
0 refund_payment_amount,
0 cart_count,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_ri
union all
select
sku_id,
0 order_count,
0 order_num,
0 order_activity_count,
0 order_coupon_count,
0 order_activity_reduce_amount,
0 order_coupon_reduce_amount,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_order_count,
0 refund_order_num,
0 refund_order_amount,
refund_payment_count,
refund_payment_num,
refund_payment_amount,
0 cart_count,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_rp
union all
select
sku_id,
0 order_count,
0 order_num,
0 order_activity_count,
0 order_coupon_count,
0 order_activity_reduce_amount,
0 order_coupon_reduce_amount,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_order_count,
0 refund_order_num,
0 refund_order_amount,
0 refund_payment_count,
0 refund_payment_num,
0 refund_payment_amount,
cart_count,
favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_cf
union all
select
sku_id,
0 order_count,
0 order_num,
0 order_activity_count,
0 order_coupon_count,
0 order_activity_reduce_amount,
0 order_coupon_reduce_amount,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_order_count,
0 refund_order_num,
0 refund_order_amount,
0 refund_payment_count,
0 refund_payment_num,
0 refund_payment_amount,
0 cart_count,
0 favor_count,
appraise_good_count,
appraise_mid_count,
appraise_bad_count,
appraise_default_count
from tmp_comment
)t1
group by sku_id;"
dws_coupon_info_daycount="
with
tmp_cu as
(
select
coupon_id,
sum(if(date_format(get_time,'yyyy-MM-dd')='$do_date',1,0)) get_count,
sum(if(date_format(using_time,'yyyy-MM-dd')='$do_date',1,0)) order_count,
sum(if(date_format(used_time,'yyyy-MM-dd')='$do_date',1,0)) payment_count,
sum(if(date_format(expire_time,'yyyy-MM-dd')='$do_date',1,0)) expire_count
from ${APP}.dwd_coupon_use
where dt='9999-99-99'
or dt='$do_date'
group by coupon_id
),
tmp_order as
(
select
coupon_id,
sum(split_coupon_amount) order_reduce_amount,
sum(original_amount) order_original_amount,
sum(split_final_amount) order_final_amount
from ${APP}.dwd_order_detail
where dt='$do_date'
and coupon_id is not null
group by coupon_id
),
tmp_pay as
(
select
coupon_id,
sum(split_coupon_amount) payment_reduce_amount,
sum(split_final_amount) payment_amount
from ${APP}.dwd_order_detail
where (dt='$do_date'
or dt=date_add('$do_date',-1))
and coupon_id is not null
and order_id in
(
select order_id from ${APP}.dwd_payment_info where dt='$do_date'
)
group by coupon_id
)
insert overwrite table ${APP}.dws_coupon_info_daycount partition(dt='$do_date')
select
coupon_id,
sum(get_count),
sum(order_count),
sum(order_reduce_amount),
sum(order_original_amount),
sum(order_final_amount),
sum(payment_count),
sum(payment_reduce_amount),
sum(payment_amount),
sum(expire_count)
from
(
select
coupon_id,
get_count,
order_count,
0 order_reduce_amount,
0 order_original_amount,
0 order_final_amount,
payment_count,
0 payment_reduce_amount,
0 payment_amount,
expire_count
from tmp_cu
union all
select
coupon_id,
0 get_count,
0 order_count,
order_reduce_amount,
order_original_amount,
order_final_amount,
0 payment_count,
0 payment_reduce_amount,
0 payment_amount,
0 expire_count
from tmp_order
union all
select
coupon_id,
0 get_count,
0 order_count,
0 order_reduce_amount,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
payment_reduce_amount,
payment_amount,
0 expire_count
from tmp_pay
)t1
group by coupon_id;"
dws_area_stats_daycount="
with
tmp_vu as
(
select
id province_id,
visit_count,
login_count,
visitor_count,
user_count
from
(
select
area_code,
count(*) visit_count,--访客访问次数
count(user_id) login_count,--用户访问次数,等价于sum(if(user_id is not null,1,0))
count(distinct(mid_id)) visitor_count,--访客人数
count(distinct(user_id)) user_count--用户人数
from ${APP}.dwd_page_log
where dt='$do_date'
and last_page_id is null
group by area_code
)tmp
left join ${APP}.dim_base_province area
on tmp.area_code=area.area_code
),
tmp_order as
(
select
province_id,
count(*) order_count,
sum(original_amount) order_original_amount,
sum(final_amount) order_final_amount
from ${APP}.dwd_order_info
where dt='$do_date'
or dt='9999-99-99'
and date_format(create_time,'yyyy-MM-dd')='$do_date'
group by province_id
),
tmp_pay as
(
select
province_id,
count(*) payment_count,
sum(payment_amount) payment_amount
from ${APP}.dwd_payment_info
where dt='$do_date'
group by province_id
),
tmp_ro as
(
select
province_id,
count(*) refund_order_count,
sum(refund_amount) refund_order_amount
from ${APP}.dwd_order_refund_info
where dt='$do_date'
group by province_id
),
tmp_rp as
(
select
province_id,
count(*) refund_payment_count,
sum(refund_amount) refund_payment_amount
from ${APP}.dwd_refund_payment
where dt='$do_date'
group by province_id
)
insert overwrite table ${APP}.dws_area_stats_daycount partition(dt='$do_date')
select
province_id,
sum(visit_count),
sum(login_count),
sum(visitor_count),
sum(user_count),
sum(order_count),
sum(order_original_amount),
sum(order_final_amount),
sum(payment_count),
sum(payment_amount),
sum(refund_order_count),
sum(refund_order_amount),
sum(refund_payment_count),
sum(refund_payment_amount)
from
(
select
province_id,
visit_count,
login_count,
visitor_count,
user_count,
0 order_count,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
0 payment_amount,
0 refund_order_count,
0 refund_order_amount,
0 refund_payment_count,
0 refund_payment_amount
from tmp_vu
union all
select
province_id,
0 visit_count,
0 login_count,
0 visitor_count,
0 user_count,
order_count,
order_original_amount,
order_final_amount,
0 payment_count,
0 payment_amount,
0 refund_order_count,
0 refund_order_amount,
0 refund_payment_count,
0 refund_payment_amount
from tmp_order
union all
select
province_id,
0 visit_count,
0 login_count,
0 visitor_count,
0 user_count,
0 order_count,
0 order_original_amount,
0 order_final_amount,
payment_count,
payment_amount,
0 refund_order_count,
0 refund_order_amount,
0 refund_payment_count,
0 refund_payment_amount
from tmp_pay
union all
select
province_id,
0 visit_count,
0 login_count,
0 visitor_count,
0 user_count,
0 order_count,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
0 payment_amount,
refund_order_count,
refund_order_amount,
0 refund_payment_count,
0 refund_payment_amount
from tmp_ro
union all
select
province_id,
0 visit_count,
0 login_count,
0 visitor_count,
0 user_count,
0 order_count,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
0 payment_amount,
0 refund_order_count,
0 refund_order_amount,
refund_payment_count,
refund_payment_amount
from tmp_rp
)t1
group by province_id;"
case $1 in
"dws_visitor_action_daycount" )
hive -e "$dws_visitor_action_daycount"
;;
"dws_user_action_daycount" )
hive -e "$dws_user_action_daycount"
;;
"dws_activity_info_daycount" )
hive -e "$dws_activity_info_daycount"
;;
"dws_area_stats_daycount" )
hive -e "$dws_area_stats_daycount"
;;
"dws_sku_action_daycount" )
hive -e "$dws_sku_action_daycount"
;;
"dws_coupon_info_daycount" )
hive -e "$dws_coupon_info_daycount"
;;
"all" )
hive -e "$dws_visitor_action_daycount$dws_user_action_daycount$dws_activity_info_daycount$dws_area_stats_daycount$dws_sku_action_daycount$dws_coupon_info_daycount"
;;
esac
#!/bin/bash
APP=gmall
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$2" ] ;then
do_date=$2
else
do_date=`date -d "-1 day" +%F`
fi
dws_visitor_action_daycount="insert overwrite table ${APP}.dws_visitor_action_daycount partition(dt='$do_date')
select
t1.mid_id,
t1.brand,
t1.model,
t1.is_new,
t1.channel,
t1.os,
t1.area_code,
t1.version_code,
t1.visit_count,
t3.page_stats
from
(
select
mid_id,
brand,
model,
if(array_contains(collect_set(is_new),'0'),'0','1') is_new,--ods_page_log中,同一天内,同一设备的is_new字段,可能全部为1,可能全部为0,也可能部分为0,部分为1(卸载重装),故做该处理
collect_set(channel) channel,
collect_set(os) os,
collect_set(area_code) area_code,
collect_set(version_code) version_code,
sum(if(last_page_id is null,1,0)) visit_count
from ${APP}.dwd_page_log
where dt='$do_date'
and last_page_id is null
group by mid_id,model,brand
)t1
join
(
select
mid_id,
brand,
model,
collect_set(named_struct('page_id',page_id,'page_count',page_count,'during_time',during_time)) page_stats
from
(
select
mid_id,
brand,
model,
page_id,
count(*) page_count,
sum(during_time) during_time
from ${APP}.dwd_page_log
where dt='$do_date'
group by mid_id,model,brand,page_id
)t2
group by mid_id,model,brand
)t3
on t1.mid_id=t3.mid_id
and t1.brand=t3.brand
and t1.model=t3.model;"
dws_user_action_daycount="
with
tmp_login as
(
select
user_id,
count(*) login_count
from ${APP}.dwd_page_log
where dt='$do_date'
and user_id is not null
and last_page_id is null
group by user_id
),
tmp_cf as
(
select
user_id,
sum(if(action_id='cart_add',1,0)) cart_count,
sum(if(action_id='favor_add',1,0)) favor_count
from ${APP}.dwd_action_log
where dt='$do_date'
and user_id is not null
and action_id in ('cart_add','favor_add')
group by user_id
),
tmp_order as
(
select
user_id,
count(*) order_count,
sum(if(activity_reduce_amount>0,1,0)) order_activity_count,
sum(if(coupon_reduce_amount>0,1,0)) order_coupon_count,
sum(activity_reduce_amount) order_activity_reduce_amount,
sum(coupon_reduce_amount) order_coupon_reduce_amount,
sum(original_amount) order_original_amount,
sum(final_amount) order_final_amount
from ${APP}.dwd_order_info
where (dt='$do_date'
or dt='9999-99-99')
and date_format(create_time,'yyyy-MM-dd')='$do_date'
group by user_id
),
tmp_pay as
(
select
user_id,
count(*) payment_count,
sum(payment_amount) payment_amount
from ${APP}.dwd_payment_info
where dt='$do_date'
group by user_id
),
tmp_ri as
(
select
user_id,
count(*) refund_order_count,
sum(refund_num) refund_order_num,
sum(refund_amount) refund_order_amount
from ${APP}.dwd_order_refund_info
where dt='$do_date'
group by user_id
),
tmp_rp as
(
select
rp.user_id,
count(*) refund_payment_count,
sum(ri.refund_num) refund_payment_num,
sum(rp.refund_amount) refund_payment_amount
from
(
select
user_id,
order_id,
sku_id,
refund_amount
from ${APP}.dwd_refund_payment
where dt='$do_date'
)rp
left join
(
select
user_id,
order_id,
sku_id,
refund_num
from ${APP}.dwd_order_refund_info
where dt>=date_add('$do_date',-15)
)ri
on rp.order_id=ri.order_id
and rp.sku_id=rp.sku_id
group by rp.user_id
),
tmp_coupon as
(
select
user_id,
sum(if(date_format(get_time,'yyyy-MM-dd')='$do_date',1,0)) coupon_get_count,
sum(if(date_format(using_time,'yyyy-MM-dd')='$do_date',1,0)) coupon_using_count,
sum(if(date_format(used_time,'yyyy-MM-dd')='$do_date',1,0)) coupon_used_count
from ${APP}.dwd_coupon_use
where (dt='$do_date' or dt='9999-99-99')
and (date_format(get_time, 'yyyy-MM-dd') = '$do_date'
or date_format(using_time,'yyyy-MM-dd')='$do_date'
or date_format(used_time,'yyyy-MM-dd')='$do_date')
group by user_id
),
tmp_comment as
(
select
user_id,
sum(if(appraise='1201',1,0)) appraise_good_count,
sum(if(appraise='1202',1,0)) appraise_mid_count,
sum(if(appraise='1203',1,0)) appraise_bad_count,
sum(if(appraise='1204',1,0)) appraise_default_count
from ${APP}.dwd_comment_info
where dt='$do_date'
group by user_id
),
tmp_od as
(
select
user_id,
collect_set(named_struct('sku_id',sku_id,'sku_num',sku_num,'order_count',order_count,'activity_reduce_amount',activity_reduce_amount,'coupon_reduce_amount',coupon_reduce_amount,'original_amount',original_amount,'final_amount',final_amount)) order_detail_stats
from
(
select
user_id,
sku_id,
sum(sku_num) sku_num,
count(*) order_count,
cast(sum(split_activity_amount) as decimal(16,2)) activity_reduce_amount,
cast(sum(split_coupon_amount) as decimal(16,2)) coupon_reduce_amount,
cast(sum(original_amount) as decimal(16,2)) original_amount,
cast(sum(split_final_amount) as decimal(16,2)) final_amount
from ${APP}.dwd_order_detail
where dt='$do_date'
group by user_id,sku_id
)t1
group by user_id
)
insert overwrite table ${APP}.dws_user_action_daycount partition(dt='$do_date')
select
coalesce(tmp_login.user_id,tmp_cf.user_id,tmp_order.user_id,tmp_pay.user_id,tmp_ri.user_id,tmp_rp.user_id,tmp_comment.user_id,tmp_coupon.user_id,tmp_od.user_id),
nvl(login_count,0),
nvl(cart_count,0),
nvl(favor_count,0),
nvl(order_count,0),
nvl(order_activity_count,0),
nvl(order_activity_reduce_amount,0),
nvl(order_coupon_count,0),
nvl(order_coupon_reduce_amount,0),
nvl(order_original_amount,0),
nvl(order_final_amount,0),
nvl(payment_count,0),
nvl(payment_amount,0),
nvl(refund_order_count,0),
nvl(refund_order_num,0),
nvl(refund_order_amount,0),
nvl(refund_payment_count,0),
nvl(refund_payment_num,0),
nvl(refund_payment_amount,0),
nvl(coupon_get_count,0),
nvl(coupon_using_count,0),
nvl(coupon_used_count,0),
nvl(appraise_good_count,0),
nvl(appraise_mid_count,0),
nvl(appraise_bad_count,0),
nvl(appraise_default_count,0),
order_detail_stats
from tmp_login
full outer join tmp_cf on tmp_login.user_id=tmp_cf.user_id
full outer join tmp_order on coalesce(tmp_login.user_id,tmp_cf.user_id)=tmp_order.user_id
full outer join tmp_pay on coalesce(tmp_login.user_id,tmp_cf.user_id,tmp_order.user_id)=tmp_pay.user_id
full outer join tmp_ri on coalesce(tmp_login.user_id,tmp_cf.user_id,tmp_order.user_id,tmp_pay.user_id)=tmp_ri.user_id
full outer join tmp_rp on coalesce(tmp_login.user_id,tmp_cf.user_id,tmp_order.user_id,tmp_pay.user_id,tmp_ri.user_id)=tmp_rp.user_id
full outer join tmp_comment on coalesce(tmp_login.user_id,tmp_cf.user_id,tmp_order.user_id,tmp_pay.user_id,tmp_ri.user_id,tmp_rp.user_id)=tmp_comment.user_id
full outer join tmp_coupon on coalesce(tmp_login.user_id,tmp_cf.user_id,tmp_order.user_id,tmp_pay.user_id,tmp_ri.user_id,tmp_rp.user_id,tmp_comment.user_id)=tmp_coupon.user_id
full outer join tmp_od on coalesce(tmp_login.user_id,tmp_cf.user_id,tmp_order.user_id,tmp_pay.user_id,tmp_ri.user_id,tmp_rp.user_id,tmp_comment.user_id,tmp_coupon.user_id)=tmp_od.user_id;
"
dws_activity_info_daycount="
with
tmp_order as
(
select
activity_rule_id,
activity_id,
count(*) order_count,
sum(split_activity_amount) order_reduce_amount,
sum(original_amount) order_original_amount,
sum(split_final_amount) order_final_amount
from ${APP}.dwd_order_detail
where dt='$do_date'
and activity_id is not null
group by activity_rule_id,activity_id
),
tmp_pay as
(
select
activity_rule_id,
activity_id,
count(*) payment_count,
sum(split_activity_amount) payment_reduce_amount,
sum(split_final_amount) payment_amount
from ${APP}.dwd_order_detail
where (dt='$do_date'
or dt=date_add('$do_date',-1))
and activity_id is not null
and order_id in
(
select order_id from ${APP}.dwd_payment_info where dt='$do_date'
)
group by activity_rule_id,activity_id
)
insert overwrite table ${APP}.dws_activity_info_daycount partition(dt='$do_date')
select
activity_rule_id,
activity_id,
sum(order_count),
sum(order_reduce_amount),
sum(order_original_amount),
sum(order_final_amount),
sum(payment_count),
sum(payment_reduce_amount),
sum(payment_amount)
from
(
select
activity_rule_id,
activity_id,
order_count,
order_reduce_amount,
order_original_amount,
order_final_amount,
0 payment_count,
0 payment_reduce_amount,
0 payment_amount
from tmp_order
union all
select
activity_rule_id,
activity_id,
0 order_count,
0 order_reduce_amount,
0 order_original_amount,
0 order_final_amount,
payment_count,
payment_reduce_amount,
payment_amount
from tmp_pay
)t1
group by activity_rule_id,activity_id;"
dws_sku_action_daycount="
with
tmp_order as
(
select
sku_id,
count(*) order_count,
sum(sku_num) order_num,
sum(if(split_activity_amount>0,1,0)) order_activity_count,
sum(if(split_coupon_amount>0,1,0)) order_coupon_count,
sum(split_activity_amount) order_activity_reduce_amount,
sum(split_coupon_amount) order_coupon_reduce_amount,
sum(original_amount) order_original_amount,
sum(split_final_amount) order_final_amount
from ${APP}.dwd_order_detail
where dt='$do_date'
group by sku_id
),
tmp_pay as
(
select
sku_id,
count(*) payment_count,
sum(sku_num) payment_num,
sum(split_final_amount) payment_amount
from ${APP}.dwd_order_detail
where (dt='$do_date'
or dt=date_add('$do_date',-1))
and order_id in
(
select order_id from ${APP}.dwd_payment_info where dt='$do_date'
)
group by sku_id
),
tmp_ri as
(
select
sku_id,
count(*) refund_order_count,
sum(refund_num) refund_order_num,
sum(refund_amount) refund_order_amount
from ${APP}.dwd_order_refund_info
where dt='$do_date'
group by sku_id
),
tmp_rp as
(
select
rp.sku_id,
count(*) refund_payment_count,
sum(ri.refund_num) refund_payment_num,
sum(refund_amount) refund_payment_amount
from
(
select
order_id,
sku_id,
refund_amount
from ${APP}.dwd_refund_payment
where dt='$do_date'
)rp
left join
(
select
order_id,
sku_id,
refund_num
from ${APP}.dwd_order_refund_info
where dt>=date_add('$do_date',-15)
)ri
on rp.order_id=ri.order_id
and rp.sku_id=ri.sku_id
group by rp.sku_id
),
tmp_cf as
(
select
item sku_id,
sum(if(action_id='cart_add',1,0)) cart_count,
sum(if(action_id='favor_add',1,0)) favor_count
from ${APP}.dwd_action_log
where dt='$do_date'
and action_id in ('cart_add','favor_add')
group by item
),
tmp_comment as
(
select
sku_id,
sum(if(appraise='1201',1,0)) appraise_good_count,
sum(if(appraise='1202',1,0)) appraise_mid_count,
sum(if(appraise='1203',1,0)) appraise_bad_count,
sum(if(appraise='1204',1,0)) appraise_default_count
from ${APP}.dwd_comment_info
where dt='$do_date'
group by sku_id
)
insert overwrite table ${APP}.dws_sku_action_daycount partition(dt='$do_date')
select
sku_id,
sum(order_count),
sum(order_num),
sum(order_activity_count),
sum(order_coupon_count),
sum(order_activity_reduce_amount),
sum(order_coupon_reduce_amount),
sum(order_original_amount),
sum(order_final_amount),
sum(payment_count),
sum(payment_num),
sum(payment_amount),
sum(refund_order_count),
sum(refund_order_num),
sum(refund_order_amount),
sum(refund_payment_count),
sum(refund_payment_num),
sum(refund_payment_amount),
sum(cart_count),
sum(favor_count),
sum(appraise_good_count),
sum(appraise_mid_count),
sum(appraise_bad_count),
sum(appraise_default_count)
from
(
select
sku_id,
order_count,
order_num,
order_activity_count,
order_coupon_count,
order_activity_reduce_amount,
order_coupon_reduce_amount,
order_original_amount,
order_final_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_order_count,
0 refund_order_num,
0 refund_order_amount,
0 refund_payment_count,
0 refund_payment_num,
0 refund_payment_amount,
0 cart_count,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_order
union all
select
sku_id,
0 order_count,
0 order_num,
0 order_activity_count,
0 order_coupon_count,
0 order_activity_reduce_amount,
0 order_coupon_reduce_amount,
0 order_original_amount,
0 order_final_amount,
payment_count,
payment_num,
payment_amount,
0 refund_order_count,
0 refund_order_num,
0 refund_order_amount,
0 refund_payment_count,
0 refund_payment_num,
0 refund_payment_amount,
0 cart_count,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_pay
union all
select
sku_id,
0 order_count,
0 order_num,
0 order_activity_count,
0 order_coupon_count,
0 order_activity_reduce_amount,
0 order_coupon_reduce_amount,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
refund_order_count,
refund_order_num,
refund_order_amount,
0 refund_payment_count,
0 refund_payment_num,
0 refund_payment_amount,
0 cart_count,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_ri
union all
select
sku_id,
0 order_count,
0 order_num,
0 order_activity_count,
0 order_coupon_count,
0 order_activity_reduce_amount,
0 order_coupon_reduce_amount,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_order_count,
0 refund_order_num,
0 refund_order_amount,
refund_payment_count,
refund_payment_num,
refund_payment_amount,
0 cart_count,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_rp
union all
select
sku_id,
0 order_count,
0 order_num,
0 order_activity_count,
0 order_coupon_count,
0 order_activity_reduce_amount,
0 order_coupon_reduce_amount,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_order_count,
0 refund_order_num,
0 refund_order_amount,
0 refund_payment_count,
0 refund_payment_num,
0 refund_payment_amount,
cart_count,
favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_cf
union all
select
sku_id,
0 order_count,
0 order_num,
0 order_activity_count,
0 order_coupon_count,
0 order_activity_reduce_amount,
0 order_coupon_reduce_amount,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_order_count,
0 refund_order_num,
0 refund_order_amount,
0 refund_payment_count,
0 refund_payment_num,
0 refund_payment_amount,
0 cart_count,
0 favor_count,
appraise_good_count,
appraise_mid_count,
appraise_bad_count,
appraise_default_count
from tmp_comment
)t1
group by sku_id;"
dws_coupon_info_daycount="
with
tmp_cu as
(
select
coupon_id,
sum(if(date_format(get_time,'yyyy-MM-dd')='$do_date',1,0)) get_count,
sum(if(date_format(using_time,'yyyy-MM-dd')='$do_date',1,0)) order_count,
sum(if(date_format(used_time,'yyyy-MM-dd')='$do_date',1,0)) payment_count,
sum(if(date_format(expire_time,'yyyy-MM-dd')='$do_date',1,0)) expire_count
from ${APP}.dwd_coupon_use
where dt='9999-99-99'
or dt='$do_date'
group by coupon_id
),
tmp_order as
(
select
coupon_id,
sum(split_coupon_amount) order_reduce_amount,
sum(original_amount) order_original_amount,
sum(split_final_amount) order_final_amount
from ${APP}.dwd_order_detail
where dt='$do_date'
and coupon_id is not null
group by coupon_id
),
tmp_pay as
(
select
coupon_id,
sum(split_coupon_amount) payment_reduce_amount,
sum(split_final_amount) payment_amount
from ${APP}.dwd_order_detail
where (dt='$do_date'
or dt=date_add('$do_date',-1))
and coupon_id is not null
and order_id in
(
select order_id from ${APP}.dwd_payment_info where dt='$do_date'
)
group by coupon_id
)
insert overwrite table ${APP}.dws_coupon_info_daycount partition(dt='$do_date')
select
coupon_id,
sum(get_count),
sum(order_count),
sum(order_reduce_amount),
sum(order_original_amount),
sum(order_final_amount),
sum(payment_count),
sum(payment_reduce_amount),
sum(payment_amount),
sum(expire_count)
from
(
select
coupon_id,
get_count,
order_count,
0 order_reduce_amount,
0 order_original_amount,
0 order_final_amount,
payment_count,
0 payment_reduce_amount,
0 payment_amount,
expire_count
from tmp_cu
union all
select
coupon_id,
0 get_count,
0 order_count,
order_reduce_amount,
order_original_amount,
order_final_amount,
0 payment_count,
0 payment_reduce_amount,
0 payment_amount,
0 expire_count
from tmp_order
union all
select
coupon_id,
0 get_count,
0 order_count,
0 order_reduce_amount,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
payment_reduce_amount,
payment_amount,
0 expire_count
from tmp_pay
)t1
group by coupon_id;"
dws_area_stats_daycount="
with
tmp_vu as
(
select
id province_id,
visit_count,
login_count,
visitor_count,
user_count
from
(
select
area_code,
count(*) visit_count,--访客访问次数
count(user_id) login_count,--用户访问次数,等价于sum(if(user_id is not null,1,0))
count(distinct(mid_id)) visitor_count,--访客人数
count(distinct(user_id)) user_count--用户人数
from ${APP}.dwd_page_log
where dt='$do_date'
and last_page_id is null
group by area_code
)tmp
left join ${APP}.dim_base_province area
on tmp.area_code=area.area_code
),
tmp_order as
(
select
province_id,
count(*) order_count,
sum(original_amount) order_original_amount,
sum(final_amount) order_final_amount
from ${APP}.dwd_order_info
where dt='$do_date'
or dt='9999-99-99'
and date_format(create_time,'yyyy-MM-dd')='$do_date'
group by province_id
),
tmp_pay as
(
select
province_id,
count(*) payment_count,
sum(payment_amount) payment_amount
from ${APP}.dwd_payment_info
where dt='$do_date'
group by province_id
),
tmp_ro as
(
select
province_id,
count(*) refund_order_count,
sum(refund_amount) refund_order_amount
from ${APP}.dwd_order_refund_info
where dt='$do_date'
group by province_id
),
tmp_rp as
(
select
province_id,
count(*) refund_payment_count,
sum(refund_amount) refund_payment_amount
from ${APP}.dwd_refund_payment
where dt='$do_date'
group by province_id
)
insert overwrite table ${APP}.dws_area_stats_daycount partition(dt='$do_date')
select
province_id,
sum(visit_count),
sum(login_count),
sum(visitor_count),
sum(user_count),
sum(order_count),
sum(order_original_amount),
sum(order_final_amount),
sum(payment_count),
sum(payment_amount),
sum(refund_order_count),
sum(refund_order_amount),
sum(refund_payment_count),
sum(refund_payment_amount)
from
(
select
province_id,
visit_count,
login_count,
visitor_count,
user_count,
0 order_count,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
0 payment_amount,
0 refund_order_count,
0 refund_order_amount,
0 refund_payment_count,
0 refund_payment_amount
from tmp_vu
union all
select
province_id,
0 visit_count,
0 login_count,
0 visitor_count,
0 user_count,
order_count,
order_original_amount,
order_final_amount,
0 payment_count,
0 payment_amount,
0 refund_order_count,
0 refund_order_amount,
0 refund_payment_count,
0 refund_payment_amount
from tmp_order
union all
select
province_id,
0 visit_count,
0 login_count,
0 visitor_count,
0 user_count,
0 order_count,
0 order_original_amount,
0 order_final_amount,
payment_count,
payment_amount,
0 refund_order_count,
0 refund_order_amount,
0 refund_payment_count,
0 refund_payment_amount
from tmp_pay
union all
select
province_id,
0 visit_count,
0 login_count,
0 visitor_count,
0 user_count,
0 order_count,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
0 payment_amount,
refund_order_count,
refund_order_amount,
0 refund_payment_count,
0 refund_payment_amount
from tmp_ro
union all
select
province_id,
0 visit_count,
0 login_count,
0 visitor_count,
0 user_count,
0 order_count,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
0 payment_amount,
0 refund_order_count,
0 refund_order_amount,
refund_payment_count,
refund_payment_amount
from tmp_rp
)t1
group by province_id;"
case $1 in
"dws_visitor_action_daycount" )
hive -e "$dws_visitor_action_daycount"
;;
"dws_user_action_daycount" )
hive -e "$dws_user_action_daycount"
;;
"dws_activity_info_daycount" )
hive -e "$dws_activity_info_daycount"
;;
"dws_area_stats_daycount" )
hive -e "$dws_area_stats_daycount"
;;
"dws_sku_action_daycount" )
hive -e "$dws_sku_action_daycount"
;;
"dws_coupon_info_daycount" )
hive -e "$dws_coupon_info_daycount"
;;
"all" )
hive -e "$dws_visitor_action_daycount$dws_user_action_daycount$dws_activity_info_daycount$dws_area_stats_daycount$dws_sku_action_daycount$dws_coupon_info_daycount"
;;
esac
(2)增加执行权限
[atguigu@hadoop102 bin]$ chmod +x dwd_to_dws.sh
2)脚本使用
(1)执行脚本
[atguigu@hadoop102 bin]$ dwd_to_dws.sh all 2020-06-14
(2)查看数据是否导入成功
第五章 数仓搭建-DWT层
在DWS层的搭建中,我们把不同的主体按照天进行了聚合,获得了每天每个主题的相关事实度量数据。在DWT层中,我们将会把这些不同的主题进行进一步汇总,获得每个主题的全量数据表。
DWT层主题宽表记录的字段包括每个维度关联的不同事实表度量值、累计某个时间段的度量值,以及首次时间、末次时间、累计至今的度量值。
5.1 设备主题宽表
DWT层的设备主题宽表将在每日设备行为表的基础上进行进一步汇总,获得每台设备对应的详细信息,每天将新增的设备信息增加到设备主题宽表中,并添加首次访问时间,末次访问时间、累积访问次数等信息,方便后续实现与设备相关的需求。
1)建表语句
DROP TABLE IF EXISTS dwt_visitor_topic;
CREATE EXTERNAL TABLE dwt_visitor_topic
(
`mid_id` STRING COMMENT '设备id',
`brand` STRING COMMENT '手机品牌',
`model` STRING COMMENT '手机型号',
`channel` ARRAY<STRING> COMMENT '渠道',
`os` ARRAY<STRING> COMMENT '操作系统',
`area_code` ARRAY<STRING> COMMENT '地区ID',
`version_code` ARRAY<STRING> COMMENT '应用版本',
`visit_date_first` STRING COMMENT '首次访问时间',
`visit_date_last` STRING COMMENT '末次访问时间',
`visit_last_1d_count` BIGINT COMMENT '最近1日访问次数',
`visit_last_1d_day_count` BIGINT COMMENT '最近1日访问天数',
`visit_last_7d_count` BIGINT COMMENT '最近7日访问次数',
`visit_last_7d_day_count` BIGINT COMMENT '最近7日访问天数',
`visit_last_30d_count` BIGINT COMMENT '最近30日访问次数',
`visit_last_30d_day_count` BIGINT COMMENT '最近30日访问天数',
`visit_count` BIGINT COMMENT '累积访问次数',
`visit_day_count` BIGINT COMMENT '累积访问天数'
) COMMENT '设备主题宽表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dwt/dwt_visitor_topic'
TBLPROPERTIES ("parquet.compression"="lzo");
2)数据装载
insert overwrite table dwt_visitor_topic partition(dt='2020-06-14')
select
nvl(1d_ago.mid_id,old.mid_id),
nvl(1d_ago.brand,old.brand),
nvl(1d_ago.model,old.model),
nvl(1d_ago.channel,old.channel),
nvl(1d_ago.os,old.os),
nvl(1d_ago.area_code,old.area_code),
nvl(1d_ago.version_code,old.version_code),
case when old.mid_id is null and 1d_ago.is_new=1 then '2020-06-14'
when old.mid_id is null and 1d_ago.is_new=0 then '2020-06-13'-- 无法获取准确的首次登录日期,给定一个数仓搭建日之前的日期
else old.visit_date_first end,
if(1d_ago.mid_id is not null,'2020-06-14',old.visit_date_last),
nvl(1d_ago.visit_count,0),
if(1d_ago.mid_id is null,0,1),
nvl(old.visit_last_7d_count,0)+nvl(1d_ago.visit_count,0)- nvl(7d_ago.visit_count,0),
nvl(old.visit_last_7d_day_count,0)+if(1d_ago.mid_id is null,0,1)- if(7d_ago.mid_id is null,0,1),
nvl(old.visit_last_30d_count,0)+nvl(1d_ago.visit_count,0)- nvl(30d_ago.visit_count,0),
nvl(old.visit_last_30d_day_count,0)+if(1d_ago.mid_id is null,0,1)- if(30d_ago.mid_id is null,0,1),
nvl(old.visit_count,0)+nvl(1d_ago.visit_count,0),
nvl(old.visit_day_count,0)+if(1d_ago.mid_id is null,0,1)
from
(
select
mid_id,
brand,
model,
channel,
os,
area_code,
version_code,
visit_date_first,
visit_date_last,
visit_last_1d_count,
visit_last_1d_day_count,
visit_last_7d_count,
visit_last_7d_day_count,
visit_last_30d_count,
visit_last_30d_day_count,
visit_count,
visit_day_count
from dwt_visitor_topic
where dt=date_add('2020-06-14',-1)
)old
full outer join
(
select
mid_id,
brand,
model,
is_new,
channel,
os,
area_code,
version_code,
visit_count
from dws_visitor_action_daycount
where dt='2020-06-14'
)1d_ago
on old.mid_id=1d_ago.mid_id
left join
(
select
mid_id,
brand,
model,
is_new,
channel,
os,
area_code,
version_code,
visit_count
from dws_visitor_action_daycount
where dt=date_add('2020-06-14',-7)
)7d_ago
on old.mid_id=7d_ago.mid_id
left join
(
select
mid_id,
brand,
model,
is_new,
channel,
os,
area_code,
version_code,
visit_count
from dws_visitor_action_daycount
where dt=date_add('2020-06-14',-30)
)30d_ago
on old.mid_id=30d_ago.mid_id;
3)查询加载结果
5.2 用户主题宽表
1)建表语句
DROP TABLE IF EXISTS dwt_user_topic;
CREATE EXTERNAL TABLE dwt_user_topic
(
`user_id` STRING COMMENT '用户id',
`login_date_first` STRING COMMENT '首次活跃日期',
`login_date_last` STRING COMMENT '末次活跃日期',
`login_date_1d_count` STRING COMMENT '最近1日登录次数',
`login_last_1d_day_count` BIGINT COMMENT '最近1日登录天数',
`login_last_7d_count` BIGINT COMMENT '最近7日登录次数',
`login_last_7d_day_count` BIGINT COMMENT '最近7日登录天数',
`login_last_30d_count` BIGINT COMMENT '最近30日登录次数',
`login_last_30d_day_count` BIGINT COMMENT '最近30日登录天数',
`login_count` BIGINT COMMENT '累积登录次数',
`login_day_count` BIGINT COMMENT '累积登录天数',
`order_date_first` STRING COMMENT '首次下单时间',
`order_date_last` STRING COMMENT '末次下单时间',
`order_last_1d_count` BIGINT COMMENT '最近1日下单次数',
`order_activity_last_1d_count` BIGINT COMMENT '最近1日订单参与活动次数',
`order_activity_reduce_last_1d_amount` DECIMAL(16,2) COMMENT '最近1日订单减免金额(活动)',
`order_coupon_last_1d_count` BIGINT COMMENT '最近1日下单用券次数',
`order_coupon_reduce_last_1d_amount` DECIMAL(16,2) COMMENT '最近1日订单减免金额(优惠券)',
`order_last_1d_original_amount` DECIMAL(16,2) COMMENT '最近1日原始下单金额',
`order_last_1d_final_amount` DECIMAL(16,2) COMMENT '最近1日最终下单金额',
`order_last_7d_count` BIGINT COMMENT '最近7日下单次数',
`order_activity_last_7d_count` BIGINT COMMENT '最近7日订单参与活动次数',
`order_activity_reduce_last_7d_amount` DECIMAL(16,2) COMMENT '最近7日订单减免金额(活动)',
`order_coupon_last_7d_count` BIGINT COMMENT '最近7日下单用券次数',
`order_coupon_reduce_last_7d_amount` DECIMAL(16,2) COMMENT '最近7日订单减免金额(优惠券)',
`order_last_7d_original_amount` DECIMAL(16,2) COMMENT '最近7日原始下单金额',
`order_last_7d_final_amount` DECIMAL(16,2) COMMENT '最近7日最终下单金额',
`order_last_30d_count` BIGINT COMMENT '最近30日下单次数',
`order_activity_last_30d_count` BIGINT COMMENT '最近30日订单参与活动次数',
`order_activity_reduce_last_30d_amount` DECIMAL(16,2) COMMENT '最近30日订单减免金额(活动)',
`order_coupon_last_30d_count` BIGINT COMMENT '最近30日下单用券次数',
`order_coupon_reduce_last_30d_amount` DECIMAL(16,2) COMMENT '最近30日订单减免金额(优惠券)',
`order_last_30d_original_amount` DECIMAL(16,2) COMMENT '最近30日原始下单金额',
`order_last_30d_final_amount` DECIMAL(16,2) COMMENT '最近30日最终下单金额',
`order_count` BIGINT COMMENT '累积下单次数',
`order_activity_count` BIGINT COMMENT '累积订单参与活动次数',
`order_activity_reduce_amount` DECIMAL(16,2) COMMENT '累积订单减免金额(活动)',
`order_coupon_count` BIGINT COMMENT '累积下单用券次数',
`order_coupon_reduce_amount` DECIMAL(16,2) COMMENT '累积订单减免金额(优惠券)',
`order_original_amount` DECIMAL(16,2) COMMENT '累积原始下单金额',
`order_final_amount` DECIMAL(16,2) COMMENT '累积最终下单金额',
`payment_date_first` STRING COMMENT '首次支付时间',
`payment_date_last` STRING COMMENT '末次支付时间',
`payment_last_1d_count` BIGINT COMMENT '最近1日支付次数',
`payment_last_1d_amount` DECIMAL(16,2) COMMENT '最近1日支付金额',
`payment_last_7d_count` BIGINT COMMENT '最近7日支付次数',
`payment_last_7d_amount` DECIMAL(16,2) COMMENT '最近7日支付金额',
`payment_last_30d_count` BIGINT COMMENT '最近30日支付次数',
`payment_last_30d_amount` DECIMAL(16,2) COMMENT '最近30日支付金额',
`payment_count` BIGINT COMMENT '累积支付次数',
`payment_amount` DECIMAL(16,2) COMMENT '累积支付金额',
`refund_order_last_1d_count` BIGINT COMMENT '最近1日退单次数',
`refund_order_last_1d_num` BIGINT COMMENT '最近1日退单件数',
`refund_order_last_1d_amount` DECIMAL(16,2) COMMENT '最近1日退单金额',
`refund_order_last_7d_count` BIGINT COMMENT '最近7日退单次数',
`refund_order_last_7d_num` BIGINT COMMENT '最近7日退单件数',
`refund_order_last_7d_amount` DECIMAL(16,2) COMMENT '最近7日退单金额',
`refund_order_last_30d_count` BIGINT COMMENT '最近30日退单次数',
`refund_order_last_30d_num` BIGINT COMMENT '最近30日退单件数',
`refund_order_last_30d_amount` DECIMAL(16,2) COMMENT '最近30日退单金额',
`refund_order_count` BIGINT COMMENT '累积退单次数',
`refund_order_num` BIGINT COMMENT '累积退单件数',
`refund_order_amount` DECIMAL(16,2) COMMENT '累积退单金额',
`refund_payment_last_1d_count` BIGINT COMMENT '最近1日退款次数',
`refund_payment_last_1d_num` BIGINT COMMENT '最近1日退款件数',
`refund_payment_last_1d_amount` DECIMAL(16,2) COMMENT '最近1日退款金额',
`refund_payment_last_7d_count` BIGINT COMMENT '最近7日退款次数',
`refund_payment_last_7d_num` BIGINT COMMENT '最近7日退款件数',
`refund_payment_last_7d_amount` DECIMAL(16,2) COMMENT '最近7日退款金额',
`refund_payment_last_30d_count` BIGINT COMMENT '最近30日退款次数',
`refund_payment_last_30d_num` BIGINT COMMENT '最近30日退款件数',
`refund_payment_last_30d_amount` DECIMAL(16,2) COMMENT '最近30日退款金额',
`refund_payment_count` BIGINT COMMENT '累积退款次数',
`refund_payment_num` BIGINT COMMENT '累积退款件数',
`refund_payment_amount` DECIMAL(16,2) COMMENT '累积退款金额',
`cart_last_1d_count` BIGINT COMMENT '最近1日加入购物车次数',
`cart_last_7d_count` BIGINT COMMENT '最近7日加入购物车次数',
`cart_last_30d_count` BIGINT COMMENT '最近30日加入购物车次数',
`cart_count` BIGINT COMMENT '累积加入购物车次数',
`favor_last_1d_count` BIGINT COMMENT '最近1日收藏次数',
`favor_last_7d_count` BIGINT COMMENT '最近7日收藏次数',
`favor_last_30d_count` BIGINT COMMENT '最近30日收藏次数',
`favor_count` BIGINT COMMENT '累积收藏次数',
`coupon_last_1d_get_count` BIGINT COMMENT '最近1日领券次数',
`coupon_last_1d_using_count` BIGINT COMMENT '最近1日用券(下单)次数',
`coupon_last_1d_used_count` BIGINT COMMENT '最近1日用券(支付)次数',
`coupon_last_7d_get_count` BIGINT COMMENT '最近7日领券次数',
`coupon_last_7d_using_count` BIGINT COMMENT '最近7日用券(下单)次数',
`coupon_last_7d_used_count` BIGINT COMMENT '最近7日用券(支付)次数',
`coupon_last_30d_get_count` BIGINT COMMENT '最近30日领券次数',
`coupon_last_30d_using_count` BIGINT COMMENT '最近30日用券(下单)次数',
`coupon_last_30d_used_count` BIGINT COMMENT '最近30日用券(支付)次数',
`coupon_get_count` BIGINT COMMENT '累积领券次数',
`coupon_using_count` BIGINT COMMENT '累积用券(下单)次数',
`coupon_used_count` BIGINT COMMENT '累积用券(支付)次数',
`appraise_last_1d_good_count` BIGINT COMMENT '最近1日好评次数',
`appraise_last_1d_mid_count` BIGINT COMMENT '最近1日中评次数',
`appraise_last_1d_bad_count` BIGINT COMMENT '最近1日差评次数',
`appraise_last_1d_default_count` BIGINT COMMENT '最近1日默认评价次数',
`appraise_last_7d_good_count` BIGINT COMMENT '最近7日好评次数',
`appraise_last_7d_mid_count` BIGINT COMMENT '最近7日中评次数',
`appraise_last_7d_bad_count` BIGINT COMMENT '最近7日差评次数',
`appraise_last_7d_default_count` BIGINT COMMENT '最近7日默认评价次数',
`appraise_last_30d_good_count` BIGINT COMMENT '最近30日好评次数',
`appraise_last_30d_mid_count` BIGINT COMMENT '最近30日中评次数',
`appraise_last_30d_bad_count` BIGINT COMMENT '最近30日差评次数',
`appraise_last_30d_default_count` BIGINT COMMENT '最近30日默认评价次数',
`appraise_good_count` BIGINT COMMENT '累积好评次数',
`appraise_mid_count` BIGINT COMMENT '累积中评次数',
`appraise_bad_count` BIGINT COMMENT '累积差评次数',
`appraise_default_count` BIGINT COMMENT '累积默认评价次数'
)COMMENT '用户主题宽表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dwt/dwt_user_topic/'
TBLPROPERTIES ("parquet.compression"="lzo");
2)数据装载
(1)首日装载
insert overwrite table dwt_user_topic partition(dt='2020-06-14')
select
id,
login_date_first,-- 以用户的创建日期作为首次登录日期
nvl(login_date_last,date_add('2020-06-14',-1)),-- 若有历史登录记录,则根据历史记录获取末次登录日期,否则统一指定一个日期
nvl(login_last_1d_count,0),
nvl(login_last_1d_day_count,0),
nvl(login_last_7d_count,0),
nvl(login_last_7d_day_count,0),
nvl(login_last_30d_count,0),
nvl(login_last_30d_day_count,0),
nvl(login_count,0),
nvl(login_day_count,0),
order_date_first,
order_date_last,
nvl(order_last_1d_count,0),
nvl(order_activity_last_1d_count,0),
nvl(order_activity_reduce_last_1d_amount,0),
nvl(order_coupon_last_1d_count,0),
nvl(order_coupon_reduce_last_1d_amount,0),
nvl(order_last_1d_original_amount,0),
nvl(order_last_1d_final_amount,0),
nvl(order_last_7d_count,0),
nvl(order_activity_last_7d_count,0),
nvl(order_activity_reduce_last_7d_amount,0),
nvl(order_coupon_last_7d_count,0),
nvl(order_coupon_reduce_last_7d_amount,0),
nvl(order_last_7d_original_amount,0),
nvl(order_last_7d_final_amount,0),
nvl(order_last_30d_count,0),
nvl(order_activity_last_30d_count,0),
nvl(order_activity_reduce_last_30d_amount,0),
nvl(order_coupon_last_30d_count,0),
nvl(order_coupon_reduce_last_30d_amount,0),
nvl(order_last_30d_original_amount,0),
nvl(order_last_30d_final_amount,0),
nvl(order_count,0),
nvl(order_activity_count,0),
nvl(order_activity_reduce_amount,0),
nvl(order_coupon_count,0),
nvl(order_coupon_reduce_amount,0),
nvl(order_original_amount,0),
nvl(order_final_amount,0),
payment_date_first,
payment_date_last,
nvl(payment_last_1d_count,0),
nvl(payment_last_1d_amount,0),
nvl(payment_last_7d_count,0),
nvl(payment_last_7d_amount,0),
nvl(payment_last_30d_count,0),
nvl(payment_last_30d_amount,0),
nvl(payment_count,0),
nvl(payment_amount,0),
nvl(refund_order_last_1d_count,0),
nvl(refund_order_last_1d_num,0),
nvl(refund_order_last_1d_amount,0),
nvl(refund_order_last_7d_count,0),
nvl(refund_order_last_7d_num,0),
nvl(refund_order_last_7d_amount,0),
nvl(refund_order_last_30d_count,0),
nvl(refund_order_last_30d_num,0),
nvl(refund_order_last_30d_amount,0),
nvl(refund_order_count,0),
nvl(refund_order_num,0),
nvl(refund_order_amount,0),
nvl(refund_payment_last_1d_count,0),
nvl(refund_payment_last_1d_num,0),
nvl(refund_payment_last_1d_amount,0),
nvl(refund_payment_last_7d_count,0),
nvl(refund_payment_last_7d_num,0),
nvl(refund_payment_last_7d_amount,0),
nvl(refund_payment_last_30d_count,0),
nvl(refund_payment_last_30d_num,0),
nvl(refund_payment_last_30d_amount,0),
nvl(refund_payment_count,0),
nvl(refund_payment_num,0),
nvl(refund_payment_amount,0),
nvl(cart_last_1d_count,0),
nvl(cart_last_7d_count,0),
nvl(cart_last_30d_count,0),
nvl(cart_count,0),
nvl(favor_last_1d_count,0),
nvl(favor_last_7d_count,0),
nvl(favor_last_30d_count,0),
nvl(favor_count,0),
nvl(coupon_last_1d_get_count,0),
nvl(coupon_last_1d_using_count,0),
nvl(coupon_last_1d_used_count,0),
nvl(coupon_last_7d_get_count,0),
nvl(coupon_last_7d_using_count,0),
nvl(coupon_last_7d_used_count,0),
nvl(coupon_last_30d_get_count,0),
nvl(coupon_last_30d_using_count,0),
nvl(coupon_last_30d_used_count,0),
nvl(coupon_get_count,0),
nvl(coupon_using_count,0),
nvl(coupon_used_count,0),
nvl(appraise_last_1d_good_count,0),
nvl(appraise_last_1d_mid_count,0),
nvl(appraise_last_1d_bad_count,0),
nvl(appraise_last_1d_default_count,0),
nvl(appraise_last_7d_good_count,0),
nvl(appraise_last_7d_mid_count,0),
nvl(appraise_last_7d_bad_count,0),
nvl(appraise_last_7d_default_count,0),
nvl(appraise_last_30d_good_count,0),
nvl(appraise_last_30d_mid_count,0),
nvl(appraise_last_30d_bad_count,0),
nvl(appraise_last_30d_default_count,0),
nvl(appraise_good_count,0),
nvl(appraise_mid_count,0),
nvl(appraise_bad_count,0),
nvl(appraise_default_count,0)
from
(
select
id,
date_format(create_time,'yyyy-MM-dd') login_date_first
from dim_user_info
where dt='9999-99-99'
)t1
left join
(
select
user_id user_id,
max(dt) login_date_last,
sum(if(dt='2020-06-14',login_count,0)) login_last_1d_count,
sum(if(dt='2020-06-14' and login_count>0,1,0)) login_last_1d_day_count,
sum(if(dt>=date_add('2020-06-14',-6),login_count,0)) login_last_7d_count,
sum(if(dt>=date_add('2020-06-14',-6) and login_count>0,1,0)) login_last_7d_day_count,
sum(if(dt>=date_add('2020-06-14',-29),login_count,0)) login_last_30d_count,
sum(if(dt>=date_add('2020-06-14',-29) and login_count>0,1,0)) login_last_30d_day_count,
sum(login_count) login_count,
sum(if(login_count>0,1,0)) login_day_count,
min(if(order_count>0,dt,null)) order_date_first,
max(if(order_count>0,dt,null)) order_date_last,
sum(if(dt='2020-06-14',order_count,0)) order_last_1d_count,
sum(if(dt='2020-06-14',order_activity_count,0)) order_activity_last_1d_count,
sum(if(dt='2020-06-14',order_activity_reduce_amount,0)) order_activity_reduce_last_1d_amount,
sum(if(dt='2020-06-14',order_coupon_count,0)) order_coupon_last_1d_count,
sum(if(dt='2020-06-14',order_coupon_reduce_amount,0)) order_coupon_reduce_last_1d_amount,
sum(if(dt='2020-06-14',order_original_amount,0)) order_last_1d_original_amount,
sum(if(dt='2020-06-14',order_final_amount,0)) order_last_1d_final_amount,
sum(if(dt>=date_add('2020-06-14',-6),order_count,0)) order_last_7d_count,
sum(if(dt>=date_add('2020-06-14',-6),order_activity_count,0)) order_activity_last_7d_count,
sum(if(dt>=date_add('2020-06-14',-6),order_activity_reduce_amount,0)) order_activity_reduce_last_7d_amount,
sum(if(dt>=date_add('2020-06-14',-6),order_coupon_count,0)) order_coupon_last_7d_count,
sum(if(dt>=date_add('2020-06-14',-6),order_coupon_reduce_amount,0)) order_coupon_reduce_last_7d_amount,
sum(if(dt>=date_add('2020-06-14',-6),order_original_amount,0)) order_last_7d_original_amount,
sum(if(dt>=date_add('2020-06-14',-6),order_final_amount,0)) order_last_7d_final_amount,
sum(if(dt>=date_add('2020-06-14',-29),order_count,0)) order_last_30d_count,
sum(if(dt>=date_add('2020-06-14',-29),order_activity_count,0)) order_activity_last_30d_count,
sum(if(dt>=date_add('2020-06-14',-29),order_activity_reduce_amount,0)) order_activity_reduce_last_30d_amount,
sum(if(dt>=date_add('2020-06-14',-29),order_coupon_count,0)) order_coupon_last_30d_count,
sum(if(dt>=date_add('2020-06-14',-29),order_coupon_reduce_amount,0)) order_coupon_reduce_last_30d_amount,
sum(if(dt>=date_add('2020-06-14',-29),order_original_amount,0)) order_last_30d_original_amount,
sum(if(dt>=date_add('2020-06-14',-29),order_final_amount,0)) order_last_30d_final_amount,
sum(order_count) order_count,
sum(order_activity_count) order_activity_count,
sum(order_activity_reduce_amount) order_activity_reduce_amount,
sum(order_coupon_count) order_coupon_count,
sum(order_coupon_reduce_amount) order_coupon_reduce_amount,
sum(order_original_amount) order_original_amount,
sum(order_final_amount) order_final_amount,
min(if(payment_count>0,dt,null)) payment_date_first,
max(if(payment_count>0,dt,null)) payment_date_last,
sum(if(dt='2020-06-14',payment_count,0)) payment_last_1d_count,
sum(if(dt='2020-06-14',payment_amount,0)) payment_last_1d_amount,
sum(if(dt>=date_add('2020-06-14',-6),payment_count,0)) payment_last_7d_count,
sum(if(dt>=date_add('2020-06-14',-6),payment_amount,0)) payment_last_7d_amount,
sum(if(dt>=date_add('2020-06-14',-29),payment_count,0)) payment_last_30d_count,
sum(if(dt>=date_add('2020-06-14',-29),payment_amount,0)) payment_last_30d_amount,
sum(payment_count) payment_count,
sum(payment_amount) payment_amount,
sum(if(dt='2020-06-14',refund_order_count,0)) refund_order_last_1d_count,
sum(if(dt='2020-06-14',refund_order_num,0)) refund_order_last_1d_num,
sum(if(dt='2020-06-14',refund_order_amount,0)) refund_order_last_1d_amount,
sum(if(dt>=date_add('2020-06-14',-6),refund_order_count,0)) refund_order_last_7d_count,
sum(if(dt>=date_add('2020-06-14',-6),refund_order_num,0)) refund_order_last_7d_num,
sum(if(dt>=date_add('2020-06-14',-6),refund_order_amount,0)) refund_order_last_7d_amount,
sum(if(dt>=date_add('2020-06-14',-29),refund_order_count,0)) refund_order_last_30d_count,
sum(if(dt>=date_add('2020-06-14',-29),refund_order_num,0)) refund_order_last_30d_num,
sum(if(dt>=date_add('2020-06-14',-29),refund_order_amount,0)) refund_order_last_30d_amount,
sum(refund_order_count) refund_order_count,
sum(refund_order_num) refund_order_num,
sum(refund_order_amount) refund_order_amount,
sum(if(dt='2020-06-14',refund_payment_count,0)) refund_payment_last_1d_count,
sum(if(dt='2020-06-14',refund_payment_num,0)) refund_payment_last_1d_num,
sum(if(dt='2020-06-14',refund_payment_amount,0)) refund_payment_last_1d_amount,
sum(if(dt>=date_add('2020-06-14',-6),refund_payment_count,0)) refund_payment_last_7d_count,
sum(if(dt>=date_add('2020-06-14',-6),refund_payment_num,0)) refund_payment_last_7d_num,
sum(if(dt>=date_add('2020-06-14',-6),refund_payment_amount,0)) refund_payment_last_7d_amount,
sum(if(dt>=date_add('2020-06-14',-29),refund_payment_count,0)) refund_payment_last_30d_count,
sum(if(dt>=date_add('2020-06-14',-29),refund_payment_num,0)) refund_payment_last_30d_num,
sum(if(dt>=date_add('2020-06-14',-29),refund_payment_amount,0)) refund_payment_last_30d_amount,
sum(refund_payment_count) refund_payment_count,
sum(refund_payment_num) refund_payment_num,
sum(refund_payment_amount) refund_payment_amount,
sum(if(dt='2020-06-14',cart_count,0)) cart_last_1d_count,
sum(if(dt>=date_add('2020-06-14',-6),cart_count,0)) cart_last_7d_count,
sum(if(dt>=date_add('2020-06-14',-29),cart_count,0)) cart_last_30d_count,
sum(cart_count) cart_count,
sum(if(dt='2020-06-14',favor_count,0)) favor_last_1d_count,
sum(if(dt>=date_add('2020-06-14',-6),favor_count,0)) favor_last_7d_count,
sum(if(dt>=date_add('2020-06-14',-29),favor_count,0)) favor_last_30d_count,
sum(favor_count) favor_count,
sum(if(dt='2020-06-14',coupon_get_count,0)) coupon_last_1d_get_count,
sum(if(dt='2020-06-14',coupon_using_count,0)) coupon_last_1d_using_count,
sum(if(dt='2020-06-14',coupon_used_count,0)) coupon_last_1d_used_count,
sum(if(dt>=date_add('2020-06-14',-6),coupon_get_count,0)) coupon_last_7d_get_count,
sum(if(dt>=date_add('2020-06-14',-6),coupon_using_count,0)) coupon_last_7d_using_count,
sum(if(dt>=date_add('2020-06-14',-6),coupon_used_count,0)) coupon_last_7d_used_count,
sum(if(dt>=date_add('2020-06-14',-29),coupon_get_count,0)) coupon_last_30d_get_count,
sum(if(dt>=date_add('2020-06-14',-29),coupon_using_count,0)) coupon_last_30d_using_count,
sum(if(dt>=date_add('2020-06-14',-29),coupon_used_count,0)) coupon_last_30d_used_count,
sum(coupon_get_count) coupon_get_count,
sum(coupon_using_count) coupon_using_count,
sum(coupon_used_count) coupon_used_count,
sum(if(dt='2020-06-14',appraise_good_count,0)) appraise_last_1d_good_count,
sum(if(dt='2020-06-14',appraise_mid_count,0)) appraise_last_1d_mid_count,
sum(if(dt='2020-06-14',appraise_bad_count,0)) appraise_last_1d_bad_count,
sum(if(dt='2020-06-14',appraise_default_count,0)) appraise_last_1d_default_count,
sum(if(dt>=date_add('2020-06-14',-6),appraise_good_count,0)) appraise_last_7d_good_count,
sum(if(dt>=date_add('2020-06-14',-6),appraise_mid_count,0)) appraise_last_7d_mid_count,
sum(if(dt>=date_add('2020-06-14',-6),appraise_bad_count,0)) appraise_last_7d_bad_count,
sum(if(dt>=date_add('2020-06-14',-6),appraise_default_count,0)) appraise_last_7d_default_count,
sum(if(dt>=date_add('2020-06-14',-29),appraise_good_count,0)) appraise_last_30d_good_count,
sum(if(dt>=date_add('2020-06-14',-29),appraise_mid_count,0)) appraise_last_30d_mid_count,
sum(if(dt>=date_add('2020-06-14',-29),appraise_bad_count,0)) appraise_last_30d_bad_count,
sum(if(dt>=date_add('2020-06-14',-29),appraise_default_count,0)) appraise_last_30d_default_count,
sum(appraise_good_count) appraise_good_count,
sum(appraise_mid_count) appraise_mid_count,
sum(appraise_bad_count) appraise_bad_count,
sum(appraise_default_count) appraise_default_count
from dws_user_action_daycount
group by user_id
)t2
on t1.id=t2.user_id;
(2)每日装载
insert overwrite table dwt_user_topic partition(dt='2020-06-15')
select
nvl(1d_ago.user_id,old.user_id),
nvl(old.login_date_first,'2020-06-15'),
if(1d_ago.user_id is not null,'2020-06-15',old.login_date_last),
nvl(1d_ago.login_count,0),
if(1d_ago.user_id is not null,1,0),
nvl(old.login_last_7d_count,0)+nvl(1d_ago.login_count,0)- nvl(7d_ago.login_count,0),
nvl(old.login_last_7d_day_count,0)+if(1d_ago.user_id is null,0,1)- if(7d_ago.user_id is null,0,1),
nvl(old.login_last_30d_count,0)+nvl(1d_ago.login_count,0)- nvl(30d_ago.login_count,0),
nvl(old.login_last_30d_day_count,0)+if(1d_ago.user_id is null,0,1)- if(30d_ago.user_id is null,0,1),
nvl(old.login_count,0)+nvl(1d_ago.login_count,0),
nvl(old.login_day_count,0)+if(1d_ago.user_id is not null,1,0),
if(old.order_date_first is null and 1d_ago.order_count>0, '2020-06-15', old.order_date_first),
if(1d_ago.order_count>0,'2020-06-15',old.order_date_last),
nvl(1d_ago.order_count,0),
nvl(1d_ago.order_activity_count,0),
nvl(1d_ago.order_activity_reduce_amount,0.0),
nvl(1d_ago.order_coupon_count,0),
nvl(1d_ago.order_coupon_reduce_amount,0.0),
nvl(1d_ago.order_original_amount,0.0),
nvl(1d_ago.order_final_amount,0.0),
nvl(old.order_last_7d_count,0)+nvl(1d_ago.order_count,0)- nvl(7d_ago.order_count,0),
nvl(old.order_activity_last_7d_count,0)+nvl(1d_ago.order_activity_count,0)- nvl(7d_ago.order_activity_count,0),
nvl(old.order_activity_reduce_last_7d_amount,0.0)+nvl(1d_ago.order_activity_reduce_amount,0.0)- nvl(7d_ago.order_activity_reduce_amount,0.0),
nvl(old.order_coupon_last_7d_count,0)+nvl(1d_ago.order_coupon_count,0)- nvl(7d_ago.order_coupon_count,0),
nvl(old.order_coupon_reduce_last_7d_amount,0.0)+nvl(1d_ago.order_coupon_reduce_amount,0.0)- nvl(7d_ago.order_coupon_reduce_amount,0.0),
nvl(old.order_last_7d_original_amount,0.0)+nvl(1d_ago.order_original_amount,0.0)- nvl(7d_ago.order_original_amount,0.0),
nvl(old.order_last_7d_final_amount,0.0)+nvl(1d_ago.order_final_amount,0.0)- nvl(7d_ago.order_final_amount,0.0),
nvl(old.order_last_30d_count,0)+nvl(1d_ago.order_count,0)- nvl(30d_ago.order_count,0),
nvl(old.order_activity_last_30d_count,0)+nvl(1d_ago.order_activity_count,0)- nvl(30d_ago.order_activity_count,0),
nvl(old.order_activity_reduce_last_30d_amount,0.0)+nvl(1d_ago.order_activity_reduce_amount,0.0)- nvl(30d_ago.order_activity_reduce_amount,0.0),
nvl(old.order_coupon_last_30d_count,0)+nvl(1d_ago.order_coupon_count,0)- nvl(30d_ago.order_coupon_count,0),
nvl(old.order_coupon_reduce_last_30d_amount,0.0)+nvl(1d_ago.order_coupon_reduce_amount,0.0)- nvl(30d_ago.order_coupon_reduce_amount,0.0),
nvl(old.order_last_30d_original_amount,0.0)+nvl(1d_ago.order_original_amount,0.0)- nvl(30d_ago.order_original_amount,0.0),
nvl(old.order_last_30d_final_amount,0.0)+nvl(1d_ago.order_final_amount,0.0)- nvl(30d_ago.order_final_amount,0.0),
nvl(old.order_count,0)+nvl(1d_ago.order_count,0),
nvl(old.order_activity_count,0)+nvl(1d_ago.order_activity_count,0),
nvl(old.order_activity_reduce_amount,0.0)+nvl(1d_ago.order_activity_reduce_amount,0.0),
nvl(old.order_coupon_count,0)+nvl(1d_ago.order_coupon_count,0),
nvl(old.order_coupon_reduce_amount,0.0)+nvl(1d_ago.order_coupon_reduce_amount,0.0),
nvl(old.order_original_amount,0.0)+nvl(1d_ago.order_original_amount,0.0),
nvl(old.order_final_amount,0.0)+nvl(1d_ago.order_final_amount,0.0),
if(old.payment_date_first is null and 1d_ago.payment_count>0, '2020-06-15', old.payment_date_first),
if(1d_ago.payment_count>0,'2020-06-15',old.payment_date_last),
nvl(1d_ago.payment_count,0),
nvl(1d_ago.payment_amount,0.0),
nvl(old.payment_last_7d_count,0)+nvl(1d_ago.payment_count,0)-nvl(7d_ago.payment_count,0),
nvl(old.payment_last_7d_amount,0.0)+nvl(1d_ago.payment_amount,0.0)-nvl(7d_ago.payment_amount,0.0),
nvl(old.payment_last_30d_count,0)+nvl(1d_ago.payment_count,0)-nvl(30d_ago.payment_count,0),
nvl(old.payment_last_30d_amount,0.0)+nvl(1d_ago.payment_amount,0.0)- nvl(30d_ago.payment_amount,0.0),
nvl(old.payment_count,0)+nvl(1d_ago.payment_count,0),
nvl(old.payment_amount,0.0)+nvl(1d_ago.payment_amount,0.0),
nvl(1d_ago.refund_order_count,0),
nvl(1d_ago.refund_order_num,0),
nvl(1d_ago.refund_order_amount,0.0),
nvl(old.refund_order_last_7d_count,0)+nvl(1d_ago.refund_order_count,0)- nvl(7d_ago.refund_order_count,0),
nvl(old.refund_order_last_7d_num,0)+nvl(1d_ago.refund_order_num, 0)- nvl(7d_ago.refund_order_num,0),
nvl(old.refund_order_last_7d_amount,0.0)+ nvl(1d_ago.refund_order_amount,0.0)- nvl(7d_ago.refund_order_amount,0.0),
nvl(old.refund_order_last_30d_count,0)+nvl(1d_ago.refund_order_count,0)- nvl(30d_ago.refund_order_count,0),
nvl(old.refund_order_last_30d_num,0)+nvl(1d_ago.refund_order_num, 0)- nvl(30d_ago.refund_order_num,0),
nvl(old.refund_order_last_30d_amount,0.0)+ nvl(1d_ago.refund_order_amount,0.0)- nvl(30d_ago.refund_order_amount,0.0),
nvl(old.refund_order_count,0)+nvl(1d_ago.refund_order_count,0),
nvl(old.refund_order_num,0)+nvl(1d_ago.refund_order_num,0),
nvl(old.refund_order_amount,0.0)+ nvl(1d_ago.refund_order_amount,0.0),
nvl(1d_ago.refund_payment_count,0),
nvl(1d_ago.refund_payment_num,0),
nvl(1d_ago.refund_payment_amount,0.0),
nvl(old.refund_payment_last_7d_count,0)+nvl(1d_ago.refund_payment_count,0)-nvl(7d_ago.refund_payment_count,0),
nvl(old.refund_payment_last_7d_num,0)+nvl(1d_ago.refund_payment_num,0)- nvl(7d_ago.refund_payment_num,0),
nvl(old.refund_payment_last_7d_amount,0.0)+ nvl(1d_ago.refund_payment_amount,0.0)- nvl(7d_ago.refund_payment_amount,0.0),
nvl(old.refund_payment_last_30d_count,0)+nvl(1d_ago.refund_payment_count,0)-nvl(30d_ago.refund_payment_count,0),
nvl(old.refund_payment_last_30d_num,0)+nvl(1d_ago.refund_payment_num,0)- nvl(30d_ago.refund_payment_num,0),
nvl(old.refund_payment_last_30d_amount,0.0)+ nvl(1d_ago.refund_payment_amount,0.0)- nvl(30d_ago.refund_payment_amount,0.0),
nvl(old.refund_payment_count,0)+nvl(1d_ago.refund_payment_count,0),
nvl(old.refund_payment_num,0)+nvl(1d_ago.refund_payment_num,0),
nvl(old.refund_payment_amount,0.0)+nvl(1d_ago.refund_payment_amount,0.0),
nvl(1d_ago.cart_count,0),
nvl(old.cart_last_7d_count,0)+nvl(1d_ago.cart_count,0)-nvl(7d_ago.cart_count,0),
nvl(old.cart_last_30d_count,0)+nvl(1d_ago.cart_count,0)-nvl(30d_ago.cart_count,0),
nvl(old.cart_count,0)+nvl(1d_ago.cart_count,0),
nvl(1d_ago.favor_count,0),
nvl(old.favor_last_7d_count,0)+nvl(1d_ago.favor_count,0)- nvl(7d_ago.favor_count,0),
nvl(old.favor_last_30d_count,0)+nvl(1d_ago.favor_count,0)- nvl(30d_ago.favor_count,0),
nvl(old.favor_count,0)+nvl(1d_ago.favor_count,0),
nvl(1d_ago.coupon_get_count,0),
nvl(1d_ago.coupon_using_count,0),
nvl(1d_ago.coupon_used_count,0),
nvl(old.coupon_last_7d_get_count,0)+nvl(1d_ago.coupon_get_count,0)- nvl(7d_ago.coupon_get_count,0),
nvl(old.coupon_last_7d_using_count,0)+nvl(1d_ago.coupon_using_count,0)- nvl(7d_ago.coupon_using_count,0),
nvl(old.coupon_last_7d_used_count,0)+ nvl(1d_ago.coupon_used_count,0)- nvl(7d_ago.coupon_used_count,0),
nvl(old.coupon_last_30d_get_count,0)+nvl(1d_ago.coupon_get_count,0)- nvl(30d_ago.coupon_get_count,0),
nvl(old.coupon_last_30d_using_count,0)+nvl(1d_ago.coupon_using_count,0)- nvl(30d_ago.coupon_using_count,0),
nvl(old.coupon_last_30d_used_count,0)+ nvl(1d_ago.coupon_used_count,0)- nvl(30d_ago.coupon_used_count,0),
nvl(old.coupon_get_count,0)+nvl(1d_ago.coupon_get_count,0),
nvl(old.coupon_using_count,0)+nvl(1d_ago.coupon_using_count,0),
nvl(old.coupon_used_count,0)+nvl(1d_ago.coupon_used_count,0),
nvl(1d_ago.appraise_good_count,0),
nvl(1d_ago.appraise_mid_count,0),
nvl(1d_ago.appraise_bad_count,0),
nvl(1d_ago.appraise_default_count,0),
nvl(old.appraise_last_7d_good_count,0)+nvl(1d_ago.appraise_good_count,0)- nvl(7d_ago.appraise_good_count,0),
nvl(old.appraise_last_7d_mid_count,0)+nvl(1d_ago.appraise_mid_count,0)-nvl(7d_ago.appraise_mid_count,0),
nvl(old.appraise_last_7d_bad_count,0)+nvl(1d_ago.appraise_bad_count,0)-nvl(7d_ago.appraise_bad_count,0),
nvl(old.appraise_last_7d_default_count,0)+nvl(1d_ago.appraise_default_count,0)-nvl(7d_ago.appraise_default_count,0),
nvl(old.appraise_last_30d_good_count,0)+nvl(1d_ago.appraise_good_count,0)- nvl(30d_ago.appraise_good_count,0),
nvl(old.appraise_last_30d_mid_count,0)+nvl(1d_ago.appraise_mid_count,0)-nvl(30d_ago.appraise_mid_count,0),
nvl(old.appraise_last_30d_bad_count,0)+nvl(1d_ago.appraise_bad_count,0)-nvl(30d_ago.appraise_bad_count,0),
nvl(old.appraise_last_30d_default_count,0)+nvl(1d_ago.appraise_default_count,0)-nvl(30d_ago.appraise_default_count,0),
nvl(old.appraise_good_count,0)+nvl(1d_ago.appraise_good_count,0),
nvl(old.appraise_mid_count,0)+nvl(1d_ago.appraise_mid_count, 0),
nvl(old.appraise_bad_count,0)+nvl(1d_ago.appraise_bad_count,0),
nvl(old.appraise_default_count,0)+nvl(1d_ago.appraise_default_count,0)
from
(
select
user_id,
login_date_first,
login_date_last,
login_date_1d_count,
login_last_1d_day_count,
login_last_7d_count,
login_last_7d_day_count,
login_last_30d_count,
login_last_30d_day_count,
login_count,
login_day_count,
order_date_first,
order_date_last,
order_last_1d_count,
order_activity_last_1d_count,
order_activity_reduce_last_1d_amount,
order_coupon_last_1d_count,
order_coupon_reduce_last_1d_amount,
order_last_1d_original_amount,
order_last_1d_final_amount,
order_last_7d_count,
order_activity_last_7d_count,
order_activity_reduce_last_7d_amount,
order_coupon_last_7d_count,
order_coupon_reduce_last_7d_amount,
order_last_7d_original_amount,
order_last_7d_final_amount,
order_last_30d_count,
order_activity_last_30d_count,
order_activity_reduce_last_30d_amount,
order_coupon_last_30d_count,
order_coupon_reduce_last_30d_amount,
order_last_30d_original_amount,
order_last_30d_final_amount,
order_count,
order_activity_count,
order_activity_reduce_amount,
order_coupon_count,
order_coupon_reduce_amount,
order_original_amount,
order_final_amount,
payment_date_first,
payment_date_last,
payment_last_1d_count,
payment_last_1d_amount,
payment_last_7d_count,
payment_last_7d_amount,
payment_last_30d_count,
payment_last_30d_amount,
payment_count,
payment_amount,
refund_order_last_1d_count,
refund_order_last_1d_num,
refund_order_last_1d_amount,
refund_order_last_7d_count,
refund_order_last_7d_num,
refund_order_last_7d_amount,
refund_order_last_30d_count,
refund_order_last_30d_num,
refund_order_last_30d_amount,
refund_order_count,
refund_order_num,
refund_order_amount,
refund_payment_last_1d_count,
refund_payment_last_1d_num,
refund_payment_last_1d_amount,
refund_payment_last_7d_count,
refund_payment_last_7d_num,
refund_payment_last_7d_amount,
refund_payment_last_30d_count,
refund_payment_last_30d_num,
refund_payment_last_30d_amount,
refund_payment_count,
refund_payment_num,
refund_payment_amount,
cart_last_1d_count,
cart_last_7d_count,
cart_last_30d_count,
cart_count,
favor_last_1d_count,
favor_last_7d_count,
favor_last_30d_count,
favor_count,
coupon_last_1d_get_count,
coupon_last_1d_using_count,
coupon_last_1d_used_count,
coupon_last_7d_get_count,
coupon_last_7d_using_count,
coupon_last_7d_used_count,
coupon_last_30d_get_count,
coupon_last_30d_using_count,
coupon_last_30d_used_count,
coupon_get_count,
coupon_using_count,
coupon_used_count,
appraise_last_1d_good_count,
appraise_last_1d_mid_count,
appraise_last_1d_bad_count,
appraise_last_1d_default_count,
appraise_last_7d_good_count,
appraise_last_7d_mid_count,
appraise_last_7d_bad_count,
appraise_last_7d_default_count,
appraise_last_30d_good_count,
appraise_last_30d_mid_count,
appraise_last_30d_bad_count,
appraise_last_30d_default_count,
appraise_good_count,
appraise_mid_count,
appraise_bad_count,
appraise_default_count
from dwt_user_topic
where dt=date_add('2020-06-15',-1)
)old
full outer join
(
select
user_id,
login_count,
cart_count,
favor_count,
order_count,
order_activity_count,
order_activity_reduce_amount,
order_coupon_count,
order_coupon_reduce_amount,
order_original_amount,
order_final_amount,
payment_count,
payment_amount,
refund_order_count,
refund_order_num,
refund_order_amount,
refund_payment_count,
refund_payment_num,
refund_payment_amount,
coupon_get_count,
coupon_using_count,
coupon_used_count,
appraise_good_count,
appraise_mid_count,
appraise_bad_count,
appraise_default_count
from dws_user_action_daycount
where dt='2020-06-15'
)1d_ago
on old.user_id=1d_ago.user_id
left join
(
select
user_id,
login_count,
cart_count,
favor_count,
order_count,
order_activity_count,
order_activity_reduce_amount,
order_coupon_count,
order_coupon_reduce_amount,
order_original_amount,
order_final_amount,
payment_count,
payment_amount,
refund_order_count,
refund_order_num,
refund_order_amount,
refund_payment_count,
refund_payment_num,
refund_payment_amount,
coupon_get_count,
coupon_using_count,
coupon_used_count,
appraise_good_count,
appraise_mid_count,
appraise_bad_count,
appraise_default_count
from dws_user_action_daycount
where dt=date_add('2020-06-15',-7)
)7d_ago
on old.user_id=7d_ago.user_id
left join
(
select
user_id,
login_count,
cart_count,
favor_count,
order_count,
order_activity_count,
order_activity_reduce_amount,
order_coupon_count,
order_coupon_reduce_amount,
order_original_amount,
order_final_amount,
payment_count,
payment_amount,
refund_order_count,
refund_order_num,
refund_order_amount,
refund_payment_count,
refund_payment_num,
refund_payment_amount,
coupon_get_count,
coupon_using_count,
coupon_used_count,
appraise_good_count,
appraise_mid_count,
appraise_bad_count,
appraise_default_count
from dws_user_action_daycount
where dt=date_add('2020-06-15',-30)
)30d_ago
on old.user_id=30d_ago.user_id;
3)查询加载结果
5.3 商品主题宽表
商品主题宽表与会员主题宽表稍有不同,商品的首次被购买时间和末次被购买时间数据没有太大的意义,重点需要获得多个事实行为的累计度量值和累计行为次数。
1)建表语句
DROP TABLE IF EXISTS dwt_sku_topic;
CREATE EXTERNAL TABLE dwt_sku_topic
(
`sku_id` STRING COMMENT 'sku_id',
`order_last_1d_count` BIGINT COMMENT '最近1日被下单次数',
`order_last_1d_num` BIGINT COMMENT '最近1日被下单件数',
`order_activity_last_1d_count` BIGINT COMMENT '最近1日参与活动被下单次数',
`order_coupon_last_1d_count` BIGINT COMMENT '最近1日使用优惠券被下单次数',
`order_activity_reduce_last_1d_amount` DECIMAL(16,2) COMMENT '最近1日优惠金额(活动)',
`order_coupon_reduce_last_1d_amount` DECIMAL(16,2) COMMENT '最近1日优惠金额(优惠券)',
`order_last_1d_original_amount` DECIMAL(16,2) COMMENT '最近1日被下单原始金额',
`order_last_1d_final_amount` DECIMAL(16,2) COMMENT '最近1日被下单最终金额',
`order_last_7d_count` BIGINT COMMENT '最近7日被下单次数',
`order_last_7d_num` BIGINT COMMENT '最近7日被下单件数',
`order_activity_last_7d_count` BIGINT COMMENT '最近7日参与活动被下单次数',
`order_coupon_last_7d_count` BIGINT COMMENT '最近7日使用优惠券被下单次数',
`order_activity_reduce_last_7d_amount` DECIMAL(16,2) COMMENT '最近7日优惠金额(活动)',
`order_coupon_reduce_last_7d_amount` DECIMAL(16,2) COMMENT '最近7日优惠金额(优惠券)',
`order_last_7d_original_amount` DECIMAL(16,2) COMMENT '最近7日被下单原始金额',
`order_last_7d_final_amount` DECIMAL(16,2) COMMENT '最近7日被下单最终金额',
`order_last_30d_count` BIGINT COMMENT '最近30日被下单次数',
`order_last_30d_num` BIGINT COMMENT '最近30日被下单件数',
`order_activity_last_30d_count` BIGINT COMMENT '最近30日参与活动被下单次数',
`order_coupon_last_30d_count` BIGINT COMMENT '最近30日使用优惠券被下单次数',
`order_activity_reduce_last_30d_amount` DECIMAL(16,2) COMMENT '最近30日优惠金额(活动)',
`order_coupon_reduce_last_30d_amount` DECIMAL(16,2) COMMENT '最近30日优惠金额(优惠券)',
`order_last_30d_original_amount` DECIMAL(16,2) COMMENT '最近30日被下单原始金额',
`order_last_30d_final_amount` DECIMAL(16,2) COMMENT '最近30日被下单最终金额',
`order_count` BIGINT COMMENT '累积被下单次数',
`order_num` BIGINT COMMENT '累积被下单件数',
`order_activity_count` BIGINT COMMENT '累积参与活动被下单次数',
`order_coupon_count` BIGINT COMMENT '累积使用优惠券被下单次数',
`order_activity_reduce_amount` DECIMAL(16,2) COMMENT '累积优惠金额(活动)',
`order_coupon_reduce_amount` DECIMAL(16,2) COMMENT '累积优惠金额(优惠券)',
`order_original_amount` DECIMAL(16,2) COMMENT '累积被下单原始金额',
`order_final_amount` DECIMAL(16,2) COMMENT '累积被下单最终金额',
`payment_last_1d_count` BIGINT COMMENT '最近1日被支付次数',
`payment_last_1d_num` BIGINT COMMENT '最近1日被支付件数',
`payment_last_1d_amount` DECIMAL(16,2) COMMENT '最近1日被支付金额',
`payment_last_7d_count` BIGINT COMMENT '最近7日被支付次数',
`payment_last_7d_num` BIGINT COMMENT '最近7日被支付件数',
`payment_last_7d_amount` DECIMAL(16,2) COMMENT '最近7日被支付金额',
`payment_last_30d_count` BIGINT COMMENT '最近30日被支付次数',
`payment_last_30d_num` BIGINT COMMENT '最近30日被支付件数',
`payment_last_30d_amount` DECIMAL(16,2) COMMENT '最近30日被支付金额',
`payment_count` BIGINT COMMENT '累积被支付次数',
`payment_num` BIGINT COMMENT '累积被支付件数',
`payment_amount` DECIMAL(16,2) COMMENT '累积被支付金额',
`refund_order_last_1d_count` BIGINT COMMENT '最近1日退单次数',
`refund_order_last_1d_num` BIGINT COMMENT '最近1日退单件数',
`refund_order_last_1d_amount` DECIMAL(16,2) COMMENT '最近1日退单金额',
`refund_order_last_7d_count` BIGINT COMMENT '最近7日退单次数',
`refund_order_last_7d_num` BIGINT COMMENT '最近7日退单件数',
`refund_order_last_7d_amount` DECIMAL(16,2) COMMENT '最近7日退单金额',
`refund_order_last_30d_count` BIGINT COMMENT '最近30日退单次数',
`refund_order_last_30d_num` BIGINT COMMENT '最近30日退单件数',
`refund_order_last_30d_amount` DECIMAL(16,2) COMMENT '最近30日退单金额',
`refund_order_count` BIGINT COMMENT '累积退单次数',
`refund_order_num` BIGINT COMMENT '累积退单件数',
`refund_order_amount` DECIMAL(16,2) COMMENT '累积退单金额',
`refund_payment_last_1d_count` BIGINT COMMENT '最近1日退款次数',
`refund_payment_last_1d_num` BIGINT COMMENT '最近1日退款件数',
`refund_payment_last_1d_amount` DECIMAL(16,2) COMMENT '最近1日退款金额',
`refund_payment_last_7d_count` BIGINT COMMENT '最近7日退款次数',
`refund_payment_last_7d_num` BIGINT COMMENT '最近7日退款件数',
`refund_payment_last_7d_amount` DECIMAL(16,2) COMMENT '最近7日退款金额',
`refund_payment_last_30d_count` BIGINT COMMENT '最近30日退款次数',
`refund_payment_last_30d_num` BIGINT COMMENT '最近30日退款件数',
`refund_payment_last_30d_amount` DECIMAL(16,2) COMMENT '最近30日退款金额',
`refund_payment_count` BIGINT COMMENT '累积退款次数',
`refund_payment_num` BIGINT COMMENT '累积退款件数',
`refund_payment_amount` DECIMAL(16,2) COMMENT '累积退款金额',
`cart_last_1d_count` BIGINT COMMENT '最近1日被加入购物车次数',
`cart_last_7d_count` BIGINT COMMENT '最近7日被加入购物车次数',
`cart_last_30d_count` BIGINT COMMENT '最近30日被加入购物车次数',
`cart_count` BIGINT COMMENT '累积被加入购物车次数',
`favor_last_1d_count` BIGINT COMMENT '最近1日被收藏次数',
`favor_last_7d_count` BIGINT COMMENT '最近7日被收藏次数',
`favor_last_30d_count` BIGINT COMMENT '最近30日被收藏次数',
`favor_count` BIGINT COMMENT '累积被收藏次数',
`appraise_last_1d_good_count` BIGINT COMMENT '最近1日好评数',
`appraise_last_1d_mid_count` BIGINT COMMENT '最近1日中评数',
`appraise_last_1d_bad_count` BIGINT COMMENT '最近1日差评数',
`appraise_last_1d_default_count` BIGINT COMMENT '最近1日默认评价数',
`appraise_last_7d_good_count` BIGINT COMMENT '最近7日好评数',
`appraise_last_7d_mid_count` BIGINT COMMENT '最近7日中评数',
`appraise_last_7d_bad_count` BIGINT COMMENT '最近7日差评数',
`appraise_last_7d_default_count` BIGINT COMMENT '最近7日默认评价数',
`appraise_last_30d_good_count` BIGINT COMMENT '最近30日好评数',
`appraise_last_30d_mid_count` BIGINT COMMENT '最近30日中评数',
`appraise_last_30d_bad_count` BIGINT COMMENT '最近30日差评数',
`appraise_last_30d_default_count` BIGINT COMMENT '最近30日默认评价数',
`appraise_good_count` BIGINT COMMENT '累积好评数',
`appraise_mid_count` BIGINT COMMENT '累积中评数',
`appraise_bad_count` BIGINT COMMENT '累积差评数',
`appraise_default_count` BIGINT COMMENT '累积默认评价数'
)COMMENT '商品主题宽表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dwt/dwt_sku_topic/'
TBLPROPERTIES ("parquet.compression"="lzo");
2)数据装载
(1)首日装载
insert overwrite table dwt_sku_topic partition(dt='2020-06-14')
select
id,
nvl(order_last_1d_count,0),
nvl(order_last_1d_num,0),
nvl(order_activity_last_1d_count,0),
nvl(order_coupon_last_1d_count,0),
nvl(order_activity_reduce_last_1d_amount,0),
nvl(order_coupon_reduce_last_1d_amount,0),
nvl(order_last_1d_original_amount,0),
nvl(order_last_1d_final_amount,0),
nvl(order_last_7d_count,0),
nvl(order_last_7d_num,0),
nvl(order_activity_last_7d_count,0),
nvl(order_coupon_last_7d_count,0),
nvl(order_activity_reduce_last_7d_amount,0),
nvl(order_coupon_reduce_last_7d_amount,0),
nvl(order_last_7d_original_amount,0),
nvl(order_last_7d_final_amount,0),
nvl(order_last_30d_count,0),
nvl(order_last_30d_num,0),
nvl(order_activity_last_30d_count,0),
nvl(order_coupon_last_30d_count,0),
nvl(order_activity_reduce_last_30d_amount,0),
nvl(order_coupon_reduce_last_30d_amount,0),
nvl(order_last_30d_original_amount,0),
nvl(order_last_30d_final_amount,0),
nvl(order_count,0),
nvl(order_num,0),
nvl(order_activity_count,0),
nvl(order_coupon_count,0),
nvl(order_activity_reduce_amount,0),
nvl(order_coupon_reduce_amount,0),
nvl(order_original_amount,0),
nvl(order_final_amount,0),
nvl(payment_last_1d_count,0),
nvl(payment_last_1d_num,0),
nvl(payment_last_1d_amount,0),
nvl(payment_last_7d_count,0),
nvl(payment_last_7d_num,0),
nvl(payment_last_7d_amount,0),
nvl(payment_last_30d_count,0),
nvl(payment_last_30d_num,0),
nvl(payment_last_30d_amount,0),
nvl(payment_count,0),
nvl(payment_num,0),
nvl(payment_amount,0),
nvl(refund_order_last_1d_count,0),
nvl(refund_order_last_1d_num,0),
nvl(refund_order_last_1d_amount,0),
nvl(refund_order_last_7d_count,0),
nvl(refund_order_last_7d_num,0),
nvl(refund_order_last_7d_amount,0),
nvl(refund_order_last_30d_count,0),
nvl(refund_order_last_30d_num,0),
nvl(refund_order_last_30d_amount,0),
nvl(refund_order_count,0),
nvl(refund_order_num,0),
nvl(refund_order_amount,0),
nvl(refund_payment_last_1d_count,0),
nvl(refund_payment_last_1d_num,0),
nvl(refund_payment_last_1d_amount,0),
nvl(refund_payment_last_7d_count,0),
nvl(refund_payment_last_7d_num,0),
nvl(refund_payment_last_7d_amount,0),
nvl(refund_payment_last_30d_count,0),
nvl(refund_payment_last_30d_num,0),
nvl(refund_payment_last_30d_amount,0),
nvl(refund_payment_count,0),
nvl(refund_payment_num,0),
nvl(refund_payment_amount,0),
nvl(cart_last_1d_count,0),
nvl(cart_last_7d_count,0),
nvl(cart_last_30d_count,0),
nvl(cart_count,0),
nvl(favor_last_1d_count,0),
nvl(favor_last_7d_count,0),
nvl(favor_last_30d_count,0),
nvl(favor_count,0),
nvl(appraise_last_1d_good_count,0),
nvl(appraise_last_1d_mid_count,0),
nvl(appraise_last_1d_bad_count,0),
nvl(appraise_last_1d_default_count,0),
nvl(appraise_last_7d_good_count,0),
nvl(appraise_last_7d_mid_count,0),
nvl(appraise_last_7d_bad_count,0),
nvl(appraise_last_7d_default_count,0),
nvl(appraise_last_30d_good_count,0),
nvl(appraise_last_30d_mid_count,0),
nvl(appraise_last_30d_bad_count,0),
nvl(appraise_last_30d_default_count,0),
nvl(appraise_good_count,0),
nvl(appraise_mid_count,0),
nvl(appraise_bad_count,0),
nvl(appraise_default_count,0)
from
(
select
id
from dim_sku_info
where dt='2020-06-14'
)t1
left join
(
select
sku_id,
sum(if(dt='2020-06-14',order_count,0)) order_last_1d_count,
sum(if(dt='2020-06-14',order_num,0)) order_last_1d_num,
sum(if(dt='2020-06-14',order_activity_count,0)) order_activity_last_1d_count,
sum(if(dt='2020-06-14',order_coupon_count,0)) order_coupon_last_1d_count,
sum(if(dt='2020-06-14',order_activity_reduce_amount,0)) order_activity_reduce_last_1d_amount,
sum(if(dt='2020-06-14',order_coupon_reduce_amount,0)) order_coupon_reduce_last_1d_amount,
sum(if(dt='2020-06-14',order_original_amount,0)) order_last_1d_original_amount,
sum(if(dt='2020-06-14',order_final_amount,0)) order_last_1d_final_amount,
sum(if(dt>=date_add('2020-06-14',-6),order_count,0)) order_last_7d_count,
sum(if(dt>=date_add('2020-06-14',-6),order_num,0)) order_last_7d_num,
sum(if(dt>=date_add('2020-06-14',-6),order_activity_count,0)) order_activity_last_7d_count,
sum(if(dt>=date_add('2020-06-14',-6),order_coupon_count,0)) order_coupon_last_7d_count,
sum(if(dt>=date_add('2020-06-14',-6),order_activity_reduce_amount,0)) order_activity_reduce_last_7d_amount,
sum(if(dt>=date_add('2020-06-14',-6),order_coupon_reduce_amount,0)) order_coupon_reduce_last_7d_amount,
sum(if(dt>=date_add('2020-06-14',-6),order_original_amount,0)) order_last_7d_original_amount,
sum(if(dt>=date_add('2020-06-14',-6),order_final_amount,0)) order_last_7d_final_amount,
sum(if(dt>=date_add('2020-06-14',-29),order_count,0)) order_last_30d_count,
sum(if(dt>=date_add('2020-06-14',-29),order_num,0)) order_last_30d_num,
sum(if(dt>=date_add('2020-06-14',-29),order_activity_count,0)) order_activity_last_30d_count,
sum(if(dt>=date_add('2020-06-14',-29),order_coupon_count,0)) order_coupon_last_30d_count,
sum(if(dt>=date_add('2020-06-14',-29),order_activity_reduce_amount,0)) order_activity_reduce_last_30d_amount,
sum(if(dt>=date_add('2020-06-14',-29),order_coupon_reduce_amount,0)) order_coupon_reduce_last_30d_amount,
sum(if(dt>=date_add('2020-06-14',-29),order_original_amount,0)) order_last_30d_original_amount,
sum(if(dt>=date_add('2020-06-14',-29),order_final_amount,0)) order_last_30d_final_amount,
sum(order_count) order_count,
sum(order_num) order_num,
sum(order_activity_count) order_activity_count,
sum(order_coupon_count) order_coupon_count,
sum(order_activity_reduce_amount) order_activity_reduce_amount,
sum(order_coupon_reduce_amount) order_coupon_reduce_amount,
sum(order_original_amount) order_original_amount,
sum(order_final_amount) order_final_amount,
sum(if(dt='2020-06-14',payment_count,0)) payment_last_1d_count,
sum(if(dt='2020-06-14',payment_num,0)) payment_last_1d_num,
sum(if(dt='2020-06-14',payment_amount,0)) payment_last_1d_amount,
sum(if(dt>=date_add('2020-06-14',-6),payment_count,0)) payment_last_7d_count,
sum(if(dt>=date_add('2020-06-14',-6),payment_num,0)) payment_last_7d_num,
sum(if(dt>=date_add('2020-06-14',-6),payment_amount,0)) payment_last_7d_amount,
sum(if(dt>=date_add('2020-06-14',-29),payment_count,0)) payment_last_30d_count,
sum(if(dt>=date_add('2020-06-14',-29),payment_num,0)) payment_last_30d_num,
sum(if(dt>=date_add('2020-06-14',-29),payment_amount,0)) payment_last_30d_amount,
sum(payment_count) payment_count,
sum(payment_num) payment_num,
sum(payment_amount) payment_amount,
sum(if(dt='2020-06-14',refund_order_count,0)) refund_order_last_1d_count,
sum(if(dt='2020-06-14',refund_order_num,0)) refund_order_last_1d_num,
sum(if(dt='2020-06-14',refund_order_amount,0)) refund_order_last_1d_amount,
sum(if(dt>=date_add('2020-06-14',-6),refund_order_count,0)) refund_order_last_7d_count,
sum(if(dt>=date_add('2020-06-14',-6),refund_order_num,0)) refund_order_last_7d_num,
sum(if(dt>=date_add('2020-06-14',-6),refund_order_amount,0)) refund_order_last_7d_amount,
sum(if(dt>=date_add('2020-06-14',-29),refund_order_count,0)) refund_order_last_30d_count,
sum(if(dt>=date_add('2020-06-14',-29),refund_order_num,0)) refund_order_last_30d_num,
sum(if(dt>=date_add('2020-06-14',-29),refund_order_amount,0)) refund_order_last_30d_amount,
sum(refund_order_count) refund_order_count,
sum(refund_order_num) refund_order_num,
sum(refund_order_amount) refund_order_amount,
sum(if(dt='2020-06-14',refund_payment_count,0)) refund_payment_last_1d_count,
sum(if(dt='2020-06-14',refund_payment_num,0)) refund_payment_last_1d_num,
sum(if(dt='2020-06-14',refund_payment_amount,0)) refund_payment_last_1d_amount,
sum(if(dt>=date_add('2020-06-14',-6),refund_payment_count,0)) refund_payment_last_7d_count,
sum(if(dt>=date_add('2020-06-14',-6),refund_payment_num,0)) refund_payment_last_7d_num,
sum(if(dt>=date_add('2020-06-14',-6),refund_payment_amount,0)) refund_payment_last_7d_amount,
sum(if(dt>=date_add('2020-06-14',-29),refund_payment_count,0)) refund_payment_last_30d_count,
sum(if(dt>=date_add('2020-06-14',-29),refund_payment_num,0)) refund_payment_last_30d_num,
sum(if(dt>=date_add('2020-06-14',-29),refund_payment_amount,0)) refund_payment_last_30d_amount,
sum(refund_payment_count) refund_payment_count,
sum(refund_payment_num) refund_payment_num,
sum(refund_payment_amount) refund_payment_amount,
sum(if(dt='2020-06-14',cart_count,0)) cart_last_1d_count,
sum(if(dt>=date_add('2020-06-14',-6),cart_count,0)) cart_last_7d_count,
sum(if(dt>=date_add('2020-06-14',-29),cart_count,0)) cart_last_30d_count,
sum(cart_count) cart_count,
sum(if(dt='2020-06-14',favor_count,0)) favor_last_1d_count,
sum(if(dt>=date_add('2020-06-14',-6),favor_count,0)) favor_last_7d_count,
sum(if(dt>=date_add('2020-06-14',-29),favor_count,0)) favor_last_30d_count,
sum(favor_count) favor_count,
sum(if(dt='2020-06-14',appraise_good_count,0)) appraise_last_1d_good_count,
sum(if(dt='2020-06-14',appraise_mid_count,0)) appraise_last_1d_mid_count,
sum(if(dt='2020-06-14',appraise_bad_count,0)) appraise_last_1d_bad_count,
sum(if(dt='2020-06-14',appraise_default_count,0)) appraise_last_1d_default_count,
sum(if(dt>=date_add('2020-06-14',-6),appraise_good_count,0)) appraise_last_7d_good_count,
sum(if(dt>=date_add('2020-06-14',-6),appraise_mid_count,0)) appraise_last_7d_mid_count,
sum(if(dt>=date_add('2020-06-14',-6),appraise_bad_count,0)) appraise_last_7d_bad_count,
sum(if(dt>=date_add('2020-06-14',-6),appraise_default_count,0)) appraise_last_7d_default_count,
sum(if(dt>=date_add('2020-06-14',-29),appraise_good_count,0)) appraise_last_30d_good_count,
sum(if(dt>=date_add('2020-06-14',-29),appraise_mid_count,0)) appraise_last_30d_mid_count,
sum(if(dt>=date_add('2020-06-14',-29),appraise_bad_count,0)) appraise_last_30d_bad_count,
sum(if(dt>=date_add('2020-06-14',-29),appraise_default_count,0)) appraise_last_30d_default_count,
sum(appraise_good_count) appraise_good_count,
sum(appraise_mid_count) appraise_mid_count,
sum(appraise_bad_count) appraise_bad_count,
sum(appraise_default_count) appraise_default_count
from dws_sku_action_daycount
group by sku_id
)t2
on t1.id=t2.sku_id;
(2)每日装载
insert overwrite table dwt_sku_topic partition(dt='2020-06-15')
select
nvl(1d_ago.sku_id,old.sku_id),
nvl(1d_ago.order_count,0),
nvl(1d_ago.order_num,0),
nvl(1d_ago.order_activity_count,0),
nvl(1d_ago.order_coupon_count,0),
nvl(1d_ago.order_activity_reduce_amount,0.0),
nvl(1d_ago.order_coupon_reduce_amount,0.0),
nvl(1d_ago.order_original_amount,0.0),
nvl(1d_ago.order_final_amount,0.0),
nvl(old.order_last_7d_count,0)+nvl(1d_ago.order_count,0)- nvl(7d_ago.order_count,0),
nvl(old.order_last_7d_num,0)+nvl(1d_ago.order_num,0)- nvl(7d_ago.order_num,0),
nvl(old.order_activity_last_7d_count,0)+nvl(1d_ago.order_activity_count,0)- nvl(7d_ago.order_activity_count,0),
nvl(old.order_coupon_last_7d_count,0)+nvl(1d_ago.order_coupon_count,0)- nvl(7d_ago.order_coupon_count,0),
nvl(old.order_activity_reduce_last_7d_amount,0.0)+nvl(1d_ago.order_activity_reduce_amount,0.0)- nvl(7d_ago.order_activity_reduce_amount,0.0),
nvl(old.order_coupon_reduce_last_7d_amount,0.0)+nvl(1d_ago.order_coupon_reduce_amount,0.0)- nvl(7d_ago.order_coupon_reduce_amount,0.0),
nvl(old.order_last_7d_original_amount,0.0)+nvl(1d_ago.order_original_amount,0.0)- nvl(7d_ago.order_original_amount,0.0),
nvl(old.order_last_7d_final_amount,0.0)+nvl(1d_ago.order_final_amount,0.0)- nvl(7d_ago.order_final_amount,0.0),
nvl(old.order_last_30d_count,0)+nvl(1d_ago.order_count,0)- nvl(30d_ago.order_count,0),
nvl(old.order_last_30d_num,0)+nvl(1d_ago.order_num,0)- nvl(30d_ago.order_num,0),
nvl(old.order_activity_last_30d_count,0)+nvl(1d_ago.order_activity_count,0)- nvl(30d_ago.order_activity_count,0),
nvl(old.order_coupon_last_30d_count,0)+nvl(1d_ago.order_coupon_count,0)- nvl(30d_ago.order_coupon_count,0),
nvl(old.order_activity_reduce_last_30d_amount,0.0)+nvl(1d_ago.order_activity_reduce_amount,0.0)- nvl(30d_ago.order_activity_reduce_amount,0.0),
nvl(old.order_coupon_reduce_last_30d_amount,0.0)+nvl(1d_ago.order_coupon_reduce_amount,0.0)- nvl(30d_ago.order_coupon_reduce_amount,0.0),
nvl(old.order_last_30d_original_amount,0.0)+nvl(1d_ago.order_original_amount,0.0)- nvl(30d_ago.order_original_amount,0.0),
nvl(old.order_last_30d_final_amount,0.0)+nvl(1d_ago.order_final_amount,0.0)- nvl(30d_ago.order_final_amount,0.0),
nvl(old.order_count,0)+nvl(1d_ago.order_count,0),
nvl(old.order_num,0)+nvl(1d_ago.order_num,0),
nvl(old.order_activity_count,0)+nvl(1d_ago.order_activity_count,0),
nvl(old.order_coupon_count,0)+nvl(1d_ago.order_coupon_count,0),
nvl(old.order_activity_reduce_amount,0.0)+nvl(1d_ago.order_activity_reduce_amount,0.0),
nvl(old.order_coupon_reduce_amount,0.0)+nvl(1d_ago.order_coupon_reduce_amount,0.0),
nvl(old.order_original_amount,0.0)+nvl(1d_ago.order_original_amount,0.0),
nvl(old.order_final_amount,0.0)+nvl(1d_ago.order_final_amount,0.0),
nvl(1d_ago.payment_count,0),
nvl(1d_ago.payment_num,0),
nvl(1d_ago.payment_amount,0.0),
nvl(old.payment_last_7d_count,0)+nvl(1d_ago.payment_count,0)- nvl(7d_ago.payment_count,0),
nvl(old.payment_last_7d_num,0)+nvl(1d_ago.payment_num,0)- nvl(7d_ago.payment_num,0),
nvl(old.payment_last_7d_amount,0.0)+nvl(1d_ago.payment_amount,0.0)- nvl(7d_ago.payment_amount,0.0),
nvl(old.payment_last_30d_count,0)+nvl(1d_ago.payment_count,0)- nvl(30d_ago.payment_count,0),
nvl(old.payment_last_30d_num,0)+nvl(1d_ago.payment_num,0)- nvl(30d_ago.payment_num,0),
nvl(old.payment_last_30d_amount,0.0)+nvl(1d_ago.payment_amount,0.0)- nvl(30d_ago.payment_amount,0.0),
nvl(old.payment_count,0)+nvl(1d_ago.payment_count,0),
nvl(old.payment_num,0)+nvl(1d_ago.payment_num,0),
nvl(old.payment_amount,0.0)+nvl(1d_ago.payment_amount,0.0),
nvl(old.refund_order_last_1d_count,0)+nvl(1d_ago.refund_order_count,0)- nvl(1d_ago.refund_order_count,0),
nvl(old.refund_order_last_1d_num,0)+nvl(1d_ago.refund_order_num,0)- nvl(1d_ago.refund_order_num,0),
nvl(old.refund_order_last_1d_amount,0.0)+nvl(1d_ago.refund_order_amount,0.0)- nvl(1d_ago.refund_order_amount,0.0),
nvl(old.refund_order_last_7d_count,0)+nvl(1d_ago.refund_order_count,0)- nvl(7d_ago.refund_order_count,0),
nvl(old.refund_order_last_7d_num,0)+nvl(1d_ago.refund_order_num,0)- nvl(7d_ago.refund_order_num,0),
nvl(old.refund_order_last_7d_amount,0.0)+nvl(1d_ago.refund_order_amount,0.0)- nvl(7d_ago.refund_order_amount,0.0),
nvl(old.refund_order_last_30d_count,0)+nvl(1d_ago.refund_order_count,0)- nvl(30d_ago.refund_order_count,0),
nvl(old.refund_order_last_30d_num,0)+nvl(1d_ago.refund_order_num,0)- nvl(30d_ago.refund_order_num,0),
nvl(old.refund_order_last_30d_amount,0.0)+nvl(1d_ago.refund_order_amount,0.0)- nvl(30d_ago.refund_order_amount,0.0),
nvl(old.refund_order_count,0)+nvl(1d_ago.refund_order_count,0),
nvl(old.refund_order_num,0)+nvl(1d_ago.refund_order_num,0),
nvl(old.refund_order_amount,0.0)+nvl(1d_ago.refund_order_amount,0.0),
nvl(1d_ago.refund_payment_count,0),
nvl(1d_ago.refund_payment_num,0),
nvl(1d_ago.refund_payment_amount,0.0),
nvl(old.refund_payment_last_7d_count,0)+nvl(1d_ago.refund_payment_count,0)- nvl(7d_ago.refund_payment_count,0),
nvl(old.refund_payment_last_7d_num,0)+nvl(1d_ago.refund_payment_num,0)- nvl(7d_ago.refund_payment_num,0),
nvl(old.refund_payment_last_7d_amount,0.0)+nvl(1d_ago.refund_payment_amount,0.0)- nvl(7d_ago.refund_payment_amount,0.0),
nvl(old.refund_payment_last_30d_count,0)+nvl(1d_ago.refund_payment_count,0)- nvl(30d_ago.refund_payment_count,0),
nvl(old.refund_payment_last_30d_num,0)+nvl(1d_ago.refund_payment_num,0)- nvl(30d_ago.refund_payment_num,0),
nvl(old.refund_payment_last_30d_amount,0.0)+nvl(1d_ago.refund_payment_amount,0.0)- nvl(30d_ago.refund_payment_amount,0.0),
nvl(old.refund_payment_count,0)+nvl(1d_ago.refund_payment_count,0),
nvl(old.refund_payment_num,0)+nvl(1d_ago.refund_payment_num,0),
nvl(old.refund_payment_amount,0.0)+nvl(1d_ago.refund_payment_amount,0.0),
nvl(1d_ago.cart_count,0),
nvl(old.cart_last_7d_count,0)+nvl(1d_ago.cart_count,0)- nvl(7d_ago.cart_count,0),
nvl(old.cart_last_30d_count,0)+nvl(1d_ago.cart_count,0)- nvl(30d_ago.cart_count,0),
nvl(old.cart_count,0)+nvl(1d_ago.cart_count,0),
nvl(1d_ago.favor_count,0),
nvl(old.favor_last_7d_count,0)+nvl(1d_ago.favor_count,0)- nvl(7d_ago.favor_count,0),
nvl(old.favor_last_30d_count,0)+nvl(1d_ago.favor_count,0)- nvl(30d_ago.favor_count,0),
nvl(old.favor_count,0)+nvl(1d_ago.favor_count,0),
nvl(1d_ago.appraise_good_count,0),
nvl(1d_ago.appraise_mid_count,0),
nvl(1d_ago.appraise_bad_count,0),
nvl(1d_ago.appraise_default_count,0),
nvl(old.appraise_last_7d_good_count,0)+nvl(1d_ago.appraise_good_count,0)- nvl(7d_ago.appraise_good_count,0),
nvl(old.appraise_last_7d_mid_count,0)+nvl(1d_ago.appraise_mid_count,0)- nvl(7d_ago.appraise_mid_count,0),
nvl(old.appraise_last_7d_bad_count,0)+nvl(1d_ago.appraise_bad_count,0)- nvl(7d_ago.appraise_bad_count,0),
nvl(old.appraise_last_7d_default_count,0)+nvl(1d_ago.appraise_default_count,0)- nvl(7d_ago.appraise_default_count,0),
nvl(old.appraise_last_30d_good_count,0)+nvl(1d_ago.appraise_good_count,0)- nvl(30d_ago.appraise_good_count,0),
nvl(old.appraise_last_30d_mid_count,0)+nvl(1d_ago.appraise_mid_count,0)- nvl(30d_ago.appraise_mid_count,0),
nvl(old.appraise_last_30d_bad_count,0)+nvl(1d_ago.appraise_bad_count,0)- nvl(30d_ago.appraise_bad_count,0),
nvl(old.appraise_last_30d_default_count,0)+nvl(1d_ago.appraise_default_count,0)- nvl(30d_ago.appraise_default_count,0),
nvl(old.appraise_good_count,0)+nvl(1d_ago.appraise_good_count,0),
nvl(old.appraise_mid_count,0)+nvl(1d_ago.appraise_mid_count,0),
nvl(old.appraise_bad_count,0)+nvl(1d_ago.appraise_bad_count,0),
nvl(old.appraise_default_count,0)+nvl(1d_ago.appraise_default_count,0)
from
(
select
sku_id,
order_last_1d_count,
order_last_1d_num,
order_activity_last_1d_count,
order_coupon_last_1d_count,
order_activity_reduce_last_1d_amount,
order_coupon_reduce_last_1d_amount,
order_last_1d_original_amount,
order_last_1d_final_amount,
order_last_7d_count,
order_last_7d_num,
order_activity_last_7d_count,
order_coupon_last_7d_count,
order_activity_reduce_last_7d_amount,
order_coupon_reduce_last_7d_amount,
order_last_7d_original_amount,
order_last_7d_final_amount,
order_last_30d_count,
order_last_30d_num,
order_activity_last_30d_count,
order_coupon_last_30d_count,
order_activity_reduce_last_30d_amount,
order_coupon_reduce_last_30d_amount,
order_last_30d_original_amount,
order_last_30d_final_amount,
order_count,
order_num,
order_activity_count,
order_coupon_count,
order_activity_reduce_amount,
order_coupon_reduce_amount,
order_original_amount,
order_final_amount,
payment_last_1d_count,
payment_last_1d_num,
payment_last_1d_amount,
payment_last_7d_count,
payment_last_7d_num,
payment_last_7d_amount,
payment_last_30d_count,
payment_last_30d_num,
payment_last_30d_amount,
payment_count,
payment_num,
payment_amount,
refund_order_last_1d_count,
refund_order_last_1d_num,
refund_order_last_1d_amount,
refund_order_last_7d_count,
refund_order_last_7d_num,
refund_order_last_7d_amount,
refund_order_last_30d_count,
refund_order_last_30d_num,
refund_order_last_30d_amount,
refund_order_count,
refund_order_num,
refund_order_amount,
refund_payment_last_1d_count,
refund_payment_last_1d_num,
refund_payment_last_1d_amount,
refund_payment_last_7d_count,
refund_payment_last_7d_num,
refund_payment_last_7d_amount,
refund_payment_last_30d_count,
refund_payment_last_30d_num,
refund_payment_last_30d_amount,
refund_payment_count,
refund_payment_num,
refund_payment_amount,
cart_last_1d_count,
cart_last_7d_count,
cart_last_30d_count,
cart_count,
favor_last_1d_count,
favor_last_7d_count,
favor_last_30d_count,
favor_count,
appraise_last_1d_good_count,
appraise_last_1d_mid_count,
appraise_last_1d_bad_count,
appraise_last_1d_default_count,
appraise_last_7d_good_count,
appraise_last_7d_mid_count,
appraise_last_7d_bad_count,
appraise_last_7d_default_count,
appraise_last_30d_good_count,
appraise_last_30d_mid_count,
appraise_last_30d_bad_count,
appraise_last_30d_default_count,
appraise_good_count,
appraise_mid_count,
appraise_bad_count,
appraise_default_count
from dwt_sku_topic
where dt=date_add('2020-06-15',-1)
)old
full outer join
(
select
sku_id,
order_count,
order_num,
order_activity_count,
order_coupon_count,
order_activity_reduce_amount,
order_coupon_reduce_amount,
order_original_amount,
order_final_amount,
payment_count,
payment_num,
payment_amount,
refund_order_count,
refund_order_num,
refund_order_amount,
refund_payment_count,
refund_payment_num,
refund_payment_amount,
cart_count,
favor_count,
appraise_good_count,
appraise_mid_count,
appraise_bad_count,
appraise_default_count
from dws_sku_action_daycount
where dt='2020-06-15'
)1d_ago
on old.sku_id=1d_ago.sku_id
left join
(
select
sku_id,
order_count,
order_num,
order_activity_count,
order_coupon_count,
order_activity_reduce_amount,
order_coupon_reduce_amount,
order_original_amount,
order_final_amount,
payment_count,
payment_num,
payment_amount,
refund_order_count,
refund_order_num,
refund_order_amount,
refund_payment_count,
refund_payment_num,
refund_payment_amount,
cart_count,
favor_count,
appraise_good_count,
appraise_mid_count,
appraise_bad_count,
appraise_default_count
from dws_sku_action_daycount
where dt=date_add('2020-06-15',-7)
)7d_ago
on old.sku_id=7d_ago.sku_id
left join
(
select
sku_id,
order_count,
order_num,
order_activity_count,
order_coupon_count,
order_activity_reduce_amount,
order_coupon_reduce_amount,
order_original_amount,
order_final_amount,
payment_count,
payment_num,
payment_amount,
refund_order_count,
refund_order_num,
refund_order_amount,
refund_payment_count,
refund_payment_num,
refund_payment_amount,
cart_count,
favor_count,
appraise_good_count,
appraise_mid_count,
appraise_bad_count,
appraise_default_count
from dws_sku_action_daycount
where dt=date_add('2020-06-15',-30)
)30d_ago
on old.sku_id=30d_ago.sku_id;
3)查询加载结果
5.4 优惠券主题宽表
优惠券主题宽表主要获取优惠券的领用、下单使用、支付使用行为的累计发生次数和当日累计次数。
1)建表语句
DROP TABLE IF EXISTS dwt_coupon_topic;
CREATE EXTERNAL TABLE dwt_coupon_topic(
`coupon_id` STRING COMMENT '优惠券ID',
`get_last_1d_count` BIGINT COMMENT '最近1日领取次数',
`get_last_7d_count` BIGINT COMMENT '最近7日领取次数',
`get_last_30d_count` BIGINT COMMENT '最近30日领取次数',
`get_count` BIGINT COMMENT '累积领取次数',
`order_last_1d_count` BIGINT COMMENT '最近1日使用某券下单次数',
`order_last_1d_reduce_amount` DECIMAL(16,2) COMMENT '最近1日使用某券下单优惠金额',
`order_last_1d_original_amount` DECIMAL(16,2) COMMENT '最近1日使用某券下单原始金额',
`order_last_1d_final_amount` DECIMAL(16,2) COMMENT '最近1日使用某券下单最终金额',
`order_last_7d_count` BIGINT COMMENT '最近7日使用某券下单次数',
`order_last_7d_reduce_amount` DECIMAL(16,2) COMMENT '最近7日使用某券下单优惠金额',
`order_last_7d_original_amount` DECIMAL(16,2) COMMENT '最近7日使用某券下单原始金额',
`order_last_7d_final_amount` DECIMAL(16,2) COMMENT '最近7日使用某券下单最终金额',
`order_last_30d_count` BIGINT COMMENT '最近30日使用某券下单次数',
`order_last_30d_reduce_amount` DECIMAL(16,2) COMMENT '最近30日使用某券下单优惠金额',
`order_last_30d_original_amount` DECIMAL(16,2) COMMENT '最近30日使用某券下单原始金额',
`order_last_30d_final_amount` DECIMAL(16,2) COMMENT '最近30日使用某券下单最终金额',
`order_count` BIGINT COMMENT '累积使用(下单)次数',
`order_reduce_amount` DECIMAL(16,2) COMMENT '使用某券累积下单优惠金额',
`order_original_amount` DECIMAL(16,2) COMMENT '使用某券累积下单原始金额',
`order_final_amount` DECIMAL(16,2) COMMENT '使用某券累积下单最终金额',
`payment_last_1d_count` BIGINT COMMENT '最近1日使用某券支付次数',
`payment_last_1d_reduce_amount` DECIMAL(16,2) COMMENT '最近1日使用某券优惠金额',
`payment_last_1d_amount` DECIMAL(16,2) COMMENT '最近1日使用某券支付金额',
`payment_last_7d_count` BIGINT COMMENT '最近7日使用某券支付次数',
`payment_last_7d_reduce_amount` DECIMAL(16,2) COMMENT '最近7日使用某券优惠金额',
`payment_last_7d_amount` DECIMAL(16,2) COMMENT '最近7日使用某券支付金额',
`payment_last_30d_count` BIGINT COMMENT '最近30日使用某券支付次数',
`payment_last_30d_reduce_amount` DECIMAL(16,2) COMMENT '最近30日使用某券优惠金额',
`payment_last_30d_amount` DECIMAL(16,2) COMMENT '最近30日使用某券支付金额',
`payment_count` BIGINT COMMENT '累积使用(支付)次数',
`payment_reduce_amount` DECIMAL(16,2) COMMENT '使用某券累积优惠金额',
`payment_amount` DECIMAL(16,2) COMMENT '使用某券累积支付金额',
`expire_last_1d_count` BIGINT COMMENT '最近1日过期次数',
`expire_last_7d_count` BIGINT COMMENT '最近7日过期次数',
`expire_last_30d_count` BIGINT COMMENT '最近30日过期次数',
`expire_count` BIGINT COMMENT '累积过期次数'
)comment '优惠券主题表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dwt/dwt_coupon_topic/'
TBLPROPERTIES ("parquet.compression"="lzo");
2)数据装载
(1)首日装载
insert overwrite table dwt_coupon_topic partition(dt='2020-06-14')
select
id,
nvl(get_last_1d_count,0),
nvl(get_last_7d_count,0),
nvl(get_last_30d_count,0),
nvl(get_count,0),
nvl(order_last_1d_count,0),
nvl(order_last_1d_reduce_amount,0),
nvl(order_last_1d_original_amount,0),
nvl(order_last_1d_final_amount,0),
nvl(order_last_7d_count,0),
nvl(order_last_7d_reduce_amount,0),
nvl(order_last_7d_original_amount,0),
nvl(order_last_7d_final_amount,0),
nvl(order_last_30d_count,0),
nvl(order_last_30d_reduce_amount,0),
nvl(order_last_30d_original_amount,0),
nvl(order_last_30d_final_amount,0),
nvl(order_count,0),
nvl(order_reduce_amount,0),
nvl(order_original_amount,0),
nvl(order_final_amount,0),
nvl(payment_last_1d_count,0),
nvl(payment_last_1d_reduce_amount,0),
nvl(payment_last_1d_amount,0),
nvl(payment_last_7d_count,0),
nvl(payment_last_7d_reduce_amount,0),
nvl(payment_last_7d_amount,0),
nvl(payment_last_30d_count,0),
nvl(payment_last_30d_reduce_amount,0),
nvl(payment_last_30d_amount,0),
nvl(payment_count,0),
nvl(payment_reduce_amount,0),
nvl(payment_amount,0),
nvl(expire_last_1d_count,0),
nvl(expire_last_7d_count,0),
nvl(expire_last_30d_count,0),
nvl(expire_count,0)
from
(
select
id
from dim_coupon_info
where dt='2020-06-14'
)t1
left join
(
select
coupon_id coupon_id,
sum(if(dt='2020-06-14',get_count,0)) get_last_1d_count,
sum(if(dt>=date_add('2020-06-14',-6),get_count,0)) get_last_7d_count,
sum(if(dt>=date_add('2020-06-14',-29),get_count,0)) get_last_30d_count,
sum(get_count) get_count,
sum(if(dt='2020-06-14',order_count,0)) order_last_1d_count,
sum(if(dt='2020-06-14',order_reduce_amount,0)) order_last_1d_reduce_amount,
sum(if(dt='2020-06-14',order_original_amount,0)) order_last_1d_original_amount,
sum(if(dt='2020-06-14',order_final_amount,0)) order_last_1d_final_amount,
sum(if(dt>=date_add('2020-06-14',-6),order_count,0)) order_last_7d_count,
sum(if(dt>=date_add('2020-06-14',-6),order_reduce_amount,0)) order_last_7d_reduce_amount,
sum(if(dt>=date_add('2020-06-14',-6),order_original_amount,0)) order_last_7d_original_amount,
sum(if(dt>=date_add('2020-06-14',-6),order_final_amount,0)) order_last_7d_final_amount,
sum(if(dt>=date_add('2020-06-14',-29),order_count,0)) order_last_30d_count,
sum(if(dt>=date_add('2020-06-14',-29),order_reduce_amount,0)) order_last_30d_reduce_amount,
sum(if(dt>=date_add('2020-06-14',-29),order_original_amount,0)) order_last_30d_original_amount,
sum(if(dt>=date_add('2020-06-14',-29),order_final_amount,0)) order_last_30d_final_amount,
sum(order_count) order_count,
sum(order_reduce_amount) order_reduce_amount,
sum(order_original_amount) order_original_amount,
sum(order_final_amount) order_final_amount,
sum(if(dt='2020-06-14',payment_count,0)) payment_last_1d_count,
sum(if(dt='2020-06-14',payment_reduce_amount,0)) payment_last_1d_reduce_amount,
sum(if(dt='2020-06-14',payment_amount,0)) payment_last_1d_amount,
sum(if(dt>=date_add('2020-06-14',-6),payment_count,0)) payment_last_7d_count,
sum(if(dt>=date_add('2020-06-14',-6),payment_reduce_amount,0)) payment_last_7d_reduce_amount,
sum(if(dt>=date_add('2020-06-14',-6),payment_amount,0)) payment_last_7d_amount,
sum(if(dt>=date_add('2020-06-14',-29),payment_count,0)) payment_last_30d_count,
sum(if(dt>=date_add('2020-06-14',-29),payment_reduce_amount,0)) payment_last_30d_reduce_amount,
sum(if(dt>=date_add('2020-06-14',-29),payment_amount,0)) payment_last_30d_amount,
sum(payment_count) payment_count,
sum(payment_reduce_amount) payment_reduce_amount,
sum(payment_amount) payment_amount,
sum(if(dt='2020-06-14',expire_count,0)) expire_last_1d_count,
sum(if(dt>=date_add('2020-06-14',-6),expire_count,0)) expire_last_7d_count,
sum(if(dt>=date_add('2020-06-14',-29),expire_count,0)) expire_last_30d_count,
sum(expire_count) expire_count
from dws_coupon_info_daycount
group by coupon_id
)t2
on t1.id=t2.coupon_id;
(2)每日装载
insert overwrite table dwt_coupon_topic partition(dt='2020-06-15')
select
nvl(1d_ago.coupon_id,old.coupon_id),
nvl(1d_ago.get_count,0),
nvl(old.get_last_7d_count,0)+nvl(1d_ago.get_count,0)- nvl(7d_ago.get_count,0),
nvl(old.get_last_30d_count,0)+nvl(1d_ago.get_count,0)- nvl(30d_ago.get_count,0),
nvl(old.get_count,0)+nvl(1d_ago.get_count,0),
nvl(1d_ago.order_count,0),
nvl(1d_ago.order_reduce_amount,0.0),
nvl(1d_ago.order_original_amount,0.0),
nvl(1d_ago.order_final_amount,0.0),
nvl(old.order_last_7d_count,0)+nvl(1d_ago.order_count,0)- nvl(7d_ago.order_count,0),
nvl(old.order_last_7d_reduce_amount,0.0)+nvl(1d_ago.order_reduce_amount,0.0)- nvl(7d_ago.order_reduce_amount,0.0),
nvl(old.order_last_7d_original_amount,0.0)+nvl(1d_ago.order_original_amount,0.0)- nvl(7d_ago.order_original_amount,0.0),
nvl(old.order_last_7d_final_amount,0.0)+nvl(1d_ago.order_final_amount,0.0)- nvl(7d_ago.order_final_amount,0.0),
nvl(old.order_last_30d_count,0)+nvl(1d_ago.order_count,0)- nvl(30d_ago.order_count,0),
nvl(old.order_last_30d_reduce_amount,0.0)+nvl(1d_ago.order_reduce_amount,0.0)- nvl(30d_ago.order_reduce_amount,0.0),
nvl(old.order_last_30d_original_amount,0.0)+nvl(1d_ago.order_original_amount,0.0)- nvl(30d_ago.order_original_amount,0.0),
nvl(old.order_last_30d_final_amount,0.0)+nvl(1d_ago.order_final_amount,0.0)- nvl(30d_ago.order_final_amount,0.0),
nvl(old.order_count,0)+nvl(1d_ago.order_count,0),
nvl(old.order_reduce_amount,0.0)+nvl(1d_ago.order_reduce_amount,0.0),
nvl(old.order_original_amount,0.0)+nvl(1d_ago.order_original_amount,0.0),
nvl(old.order_final_amount,0.0)+nvl(1d_ago.order_final_amount,0.0),
nvl(old.payment_last_1d_count,0)+nvl(1d_ago.payment_count,0)- nvl(1d_ago.payment_count,0),
nvl(old.payment_last_1d_reduce_amount,0.0)+nvl(1d_ago.payment_reduce_amount,0.0)- nvl(1d_ago.payment_reduce_amount,0.0),
nvl(old.payment_last_1d_amount,0.0)+nvl(1d_ago.payment_amount,0.0)- nvl(1d_ago.payment_amount,0.0),
nvl(old.payment_last_7d_count,0)+nvl(1d_ago.payment_count,0)- nvl(7d_ago.payment_count,0),
nvl(old.payment_last_7d_reduce_amount,0.0)+nvl(1d_ago.payment_reduce_amount,0.0)- nvl(7d_ago.payment_reduce_amount,0.0),
nvl(old.payment_last_7d_amount,0.0)+nvl(1d_ago.payment_amount,0.0)- nvl(7d_ago.payment_amount,0.0),
nvl(old.payment_last_30d_count,0)+nvl(1d_ago.payment_count,0)- nvl(30d_ago.payment_count,0),
nvl(old.payment_last_30d_reduce_amount,0.0)+nvl(1d_ago.payment_reduce_amount,0.0)- nvl(30d_ago.payment_reduce_amount,0.0),
nvl(old.payment_last_30d_amount,0.0)+nvl(1d_ago.payment_amount,0.0)- nvl(30d_ago.payment_amount,0.0),
nvl(old.payment_count,0)+nvl(1d_ago.payment_count,0),
nvl(old.payment_reduce_amount,0.0)+nvl(1d_ago.payment_reduce_amount,0.0),
nvl(old.payment_amount,0.0)+nvl(1d_ago.payment_amount,0.0),
nvl(1d_ago.expire_count,0),
nvl(old.expire_last_7d_count,0)+nvl(1d_ago.expire_count,0)- nvl(7d_ago.expire_count,0),
nvl(old.expire_last_30d_count,0)+nvl(1d_ago.expire_count,0)- nvl(30d_ago.expire_count,0),
nvl(old.expire_count,0)+nvl(1d_ago.expire_count,0)
from
(
select
coupon_id,
get_last_1d_count,
get_last_7d_count,
get_last_30d_count,
get_count,
order_last_1d_count,
order_last_1d_reduce_amount,
order_last_1d_original_amount,
order_last_1d_final_amount,
order_last_7d_count,
order_last_7d_reduce_amount,
order_last_7d_original_amount,
order_last_7d_final_amount,
order_last_30d_count,
order_last_30d_reduce_amount,
order_last_30d_original_amount,
order_last_30d_final_amount,
order_count,
order_reduce_amount,
order_original_amount,
order_final_amount,
payment_last_1d_count,
payment_last_1d_reduce_amount,
payment_last_1d_amount,
payment_last_7d_count,
payment_last_7d_reduce_amount,
payment_last_7d_amount,
payment_last_30d_count,
payment_last_30d_reduce_amount,
payment_last_30d_amount,
payment_count,
payment_reduce_amount,
payment_amount,
expire_last_1d_count,
expire_last_7d_count,
expire_last_30d_count,
expire_count
from dwt_coupon_topic
where dt=date_add('2020-06-15',-1)
)old
full outer join
(
select
coupon_id,
get_count,
order_count,
order_reduce_amount,
order_original_amount,
order_final_amount,
payment_count,
payment_reduce_amount,
payment_amount,
expire_count
from dws_coupon_info_daycount
where dt='2020-06-15'
)1d_ago
on old.coupon_id=1d_ago.coupon_id
left join
(
select
coupon_id,
get_count,
order_count,
order_reduce_amount,
order_original_amount,
order_final_amount,
payment_count,
payment_reduce_amount,
payment_amount,
expire_count
from dws_coupon_info_daycount
where dt=date_add('2020-06-15',-7)
)7d_ago
on old.coupon_id=7d_ago.coupon_id
left join
(
select
coupon_id,
get_count,
order_count,
order_reduce_amount,
order_original_amount,
order_final_amount,
payment_count,
payment_reduce_amount,
payment_amount,
expire_count
from dws_coupon_info_daycount
where dt=date_add('2020-06-15',-30)
)30d_ago
on old.coupon_id=30d_ago.coupon_id;
3)查询加载结果
5.5 活动主题宽表
活动主题宽表与优惠券主题宽表类似,主要获取下单、支付行为的当日行为次数和累计行为次数。
1)建表语句
DROP TABLE IF EXISTS dwt_activity_topic;
CREATE EXTERNAL TABLE dwt_activity_topic(
`activity_rule_id` STRING COMMENT '活动规则ID',
`activity_id` STRING COMMENT '活动ID',
`order_last_1d_count` BIGINT COMMENT '最近1日参与某活动某规则下单次数',
`order_last_1d_reduce_amount` DECIMAL(16,2) COMMENT '最近1日参与某活动某规则下单优惠金额',
`order_last_1d_original_amount` DECIMAL(16,2) COMMENT '最近1日参与某活动某规则下单原始金额',
`order_last_1d_final_amount` DECIMAL(16,2) COMMENT '最近1日参与某活动某规则下单最终金额',
`order_count` BIGINT COMMENT '参与某活动某规则累积下单次数',
`order_reduce_amount` DECIMAL(16,2) COMMENT '参与某活动某规则累积下单优惠金额',
`order_original_amount` DECIMAL(16,2) COMMENT '参与某活动某规则累积下单原始金额',
`order_final_amount` DECIMAL(16,2) COMMENT '参与某活动某规则累积下单最终金额',
`payment_last_1d_count` BIGINT COMMENT '最近1日参与某活动某规则支付次数',
`payment_last_1d_reduce_amount` DECIMAL(16,2) COMMENT '最近1日参与某活动某规则支付优惠金额',
`payment_last_1d_amount` DECIMAL(16,2) COMMENT '最近1日参与某活动某规则支付金额',
`payment_count` BIGINT COMMENT '参与某活动某规则累积支付次数',
`payment_reduce_amount` DECIMAL(16,2) COMMENT '参与某活动某规则累积支付优惠金额',
`payment_amount` DECIMAL(16,2) COMMENT '参与某活动某规则累积支付金额'
) COMMENT '活动主题宽表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dwt/dwt_activity_topic/'
TBLPROPERTIES ("parquet.compression"="lzo");
2)数据装载
(1)首日装载
insert overwrite table dwt_activity_topic partition(dt='2020-06-14')
select
t1.activity_rule_id,
t1.activity_id,
nvl(order_last_1d_count,0),
nvl(order_last_1d_reduce_amount,0),
nvl(order_last_1d_original_amount,0),
nvl(order_last_1d_final_amount,0),
nvl(order_count,0),
nvl(order_reduce_amount,0),
nvl(order_original_amount,0),
nvl(order_final_amount,0),
nvl(payment_last_1d_count,0),
nvl(payment_last_1d_reduce_amount,0),
nvl(payment_last_1d_amount,0),
nvl(payment_count,0),
nvl(payment_reduce_amount,0),
nvl(payment_amount,0)
from
(
select
activity_rule_id,
activity_id
from dim_activity_rule_info
where dt='2020-06-14'
)t1
left join
(
select
activity_rule_id,
activity_id,
sum(if(dt='2020-06-14',order_count,0)) order_last_1d_count,
sum(if(dt='2020-06-14',order_reduce_amount,0)) order_last_1d_reduce_amount,
sum(if(dt='2020-06-14',order_original_amount,0)) order_last_1d_original_amount,
sum(if(dt='2020-06-14',order_final_amount,0)) order_last_1d_final_amount,
sum(order_count) order_count,
sum(order_reduce_amount) order_reduce_amount,
sum(order_original_amount) order_original_amount,
sum(order_final_amount) order_final_amount,
sum(if(dt='2020-06-14',payment_count,0)) payment_last_1d_count,
sum(if(dt='2020-06-14',payment_reduce_amount,0)) payment_last_1d_reduce_amount,
sum(if(dt='2020-06-14',payment_amount,0)) payment_last_1d_amount,
sum(payment_count) payment_count,
sum(payment_reduce_amount) payment_reduce_amount,
sum(payment_amount) payment_amount
from dws_activity_info_daycount
group by activity_rule_id,activity_id
)t2
on t1.activity_rule_id=t2.activity_rule_id
and t1.activity_id=t2.activity_id;
(2)每日装载
insert overwrite table dwt_activity_topic partition(dt='2020-06-15')
select
nvl(1d_ago.activity_rule_id,old.activity_rule_id),
nvl(1d_ago.activity_id,old.activity_id),
nvl(1d_ago.order_count,0),
nvl(1d_ago.order_reduce_amount,0.0),
nvl(1d_ago.order_original_amount,0.0),
nvl(1d_ago.order_final_amount,0.0),
nvl(old.order_count,0)+nvl(1d_ago.order_count,0),
nvl(old.order_reduce_amount,0.0)+nvl(1d_ago.order_reduce_amount,0.0),
nvl(old.order_original_amount,0.0)+nvl(1d_ago.order_original_amount,0.0),
nvl(old.order_final_amount,0.0)+nvl(1d_ago.order_final_amount,0.0),
nvl(1d_ago.payment_count,0),
nvl(1d_ago.payment_reduce_amount,0.0),
nvl(1d_ago.payment_amount,0.0),
nvl(old.payment_count,0)+nvl(1d_ago.payment_count,0),
nvl(old.payment_reduce_amount,0.0)+nvl(1d_ago.payment_reduce_amount,0.0),
nvl(old.payment_amount,0.0)+nvl(1d_ago.payment_amount,0.0)
from
(
select
activity_rule_id,
activity_id,
order_count,
order_reduce_amount,
order_original_amount,
order_final_amount,
payment_count,
payment_reduce_amount,
payment_amount
from dwt_activity_topic
where dt=date_add('2020-06-15',-1)
)old
full outer join
(
select
activity_rule_id,
activity_id,
order_count,
order_reduce_amount,
order_original_amount,
order_final_amount,
payment_count,
payment_reduce_amount,
payment_amount
from dws_activity_info_daycount
where dt='2020-06-15'
)1d_ago
on old.activity_rule_id=1d_ago.activity_rule_id;
3)查询加载结果
5.6 地区主题
1)建表语句
DROP TABLE IF EXISTS dwt_area_topic;
CREATE EXTERNAL TABLE dwt_area_topic(
`province_id` STRING COMMENT '编号',
`visit_last_1d_count` BIGINT COMMENT '最近1日访客访问次数',
`login_last_1d_count` BIGINT COMMENT '最近1日用户访问次数',
`visit_last_7d_count` BIGINT COMMENT '最近7访客访问次数',
`login_last_7d_count` BIGINT COMMENT '最近7日用户访问次数',
`visit_last_30d_count` BIGINT COMMENT '最近30日访客访问次数',
`login_last_30d_count` BIGINT COMMENT '最近30日用户访问次数',
`visit_count` BIGINT COMMENT '累积访客访问次数',
`login_count` BIGINT COMMENT '累积用户访问次数',
`order_last_1d_count` BIGINT COMMENT '最近1天下单次数',
`order_last_1d_original_amount` DECIMAL(16,2) COMMENT '最近1天下单原始金额',
`order_last_1d_final_amount` DECIMAL(16,2) COMMENT '最近1天下单最终金额',
`order_last_7d_count` BIGINT COMMENT '最近7天下单次数',
`order_last_7d_original_amount` DECIMAL(16,2) COMMENT '最近7天下单原始金额',
`order_last_7d_final_amount` DECIMAL(16,2) COMMENT '最近7天下单最终金额',
`order_last_30d_count` BIGINT COMMENT '最近30天下单次数',
`order_last_30d_original_amount` DECIMAL(16,2) COMMENT '最近30天下单原始金额',
`order_last_30d_final_amount` DECIMAL(16,2) COMMENT '最近30天下单最终金额',
`order_count` BIGINT COMMENT '累积下单次数',
`order_original_amount` DECIMAL(16,2) COMMENT '累积下单原始金额',
`order_final_amount` DECIMAL(16,2) COMMENT '累积下单最终金额',
`payment_last_1d_count` BIGINT COMMENT '最近1天支付次数',
`payment_last_1d_amount` DECIMAL(16,2) COMMENT '最近1天支付金额',
`payment_last_7d_count` BIGINT COMMENT '最近7天支付次数',
`payment_last_7d_amount` DECIMAL(16,2) COMMENT '最近7天支付金额',
`payment_last_30d_count` BIGINT COMMENT '最近30天支付次数',
`payment_last_30d_amount` DECIMAL(16,2) COMMENT '最近30天支付金额',
`payment_count` BIGINT COMMENT '累积支付次数',
`payment_amount` DECIMAL(16,2) COMMENT '累积支付金额',
`refund_order_last_1d_count` BIGINT COMMENT '最近1天退单次数',
`refund_order_last_1d_amount` DECIMAL(16,2) COMMENT '最近1天退单金额',
`refund_order_last_7d_count` BIGINT COMMENT '最近7天退单次数',
`refund_order_last_7d_amount` DECIMAL(16,2) COMMENT '最近7天退单金额',
`refund_order_last_30d_count` BIGINT COMMENT '最近30天退单次数',
`refund_order_last_30d_amount` DECIMAL(16,2) COMMENT '最近30天退单金额',
`refund_order_count` BIGINT COMMENT '累积退单次数',
`refund_order_amount` DECIMAL(16,2) COMMENT '累积退单金额',
`refund_payment_last_1d_count` BIGINT COMMENT '最近1天退款次数',
`refund_payment_last_1d_amount` DECIMAL(16,2) COMMENT '最近1天退款金额',
`refund_payment_last_7d_count` BIGINT COMMENT '最近7天退款次数',
`refund_payment_last_7d_amount` DECIMAL(16,2) COMMENT '最近7天退款金额',
`refund_payment_last_30d_count` BIGINT COMMENT '最近30天退款次数',
`refund_payment_last_30d_amount` DECIMAL(16,2) COMMENT '最近30天退款金额',
`refund_payment_count` BIGINT COMMENT '累积退款次数',
`refund_payment_amount` DECIMAL(16,2) COMMENT '累积退款金额'
) COMMENT '地区主题宽表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dwt/dwt_area_topic/'
TBLPROPERTIES ("parquet.compression"="lzo");
2)数据装载
(1)首日装载
insert overwrite table dwt_area_topic partition(dt='2020-06-14')
select
id,
nvl(visit_last_1d_count,0),
nvl(login_last_1d_count,0),
nvl(visit_last_7d_count,0),
nvl(login_last_7d_count,0),
nvl(visit_last_30d_count,0),
nvl(login_last_30d_count,0),
nvl(visit_count,0),
nvl(login_count,0),
nvl(order_last_1d_count,0),
nvl(order_last_1d_original_amount,0),
nvl(order_last_1d_final_amount,0),
nvl(order_last_7d_count,0),
nvl(order_last_7d_original_amount,0),
nvl(order_last_7d_final_amount,0),
nvl(order_last_30d_count,0),
nvl(order_last_30d_original_amount,0),
nvl(order_last_30d_final_amount,0),
nvl(order_count,0),
nvl(order_original_amount,0),
nvl(order_final_amount,0),
nvl(payment_last_1d_count,0),
nvl(payment_last_1d_amount,0),
nvl(payment_last_7d_count,0),
nvl(payment_last_7d_amount,0),
nvl(payment_last_30d_count,0),
nvl(payment_last_30d_amount,0),
nvl(payment_count,0),
nvl(payment_amount,0),
nvl(refund_order_last_1d_count,0),
nvl(refund_order_last_1d_amount,0),
nvl(refund_order_last_7d_count,0),
nvl(refund_order_last_7d_amount,0),
nvl(refund_order_last_30d_count,0),
nvl(refund_order_last_30d_amount,0),
nvl(refund_order_count,0),
nvl(refund_order_amount,0),
nvl(refund_payment_last_1d_count,0),
nvl(refund_payment_last_1d_amount,0),
nvl(refund_payment_last_7d_count,0),
nvl(refund_payment_last_7d_amount,0),
nvl(refund_payment_last_30d_count,0),
nvl(refund_payment_last_30d_amount,0),
nvl(refund_payment_count,0),
nvl(refund_payment_amount,0)
from
(
select
id
from dim_base_province
)t1
left join
(
select
province_id province_id,
sum(if(dt='2020-06-14',visit_count,0)) visit_last_1d_count,
sum(if(dt='2020-06-14',login_count,0)) login_last_1d_count,
sum(if(dt>=date_add('2020-06-14',-6),visit_count,0)) visit_last_7d_count,
sum(if(dt>=date_add('2020-06-14',-6),login_count,0)) login_last_7d_count,
sum(if(dt>=date_add('2020-06-14',-29),visit_count,0)) visit_last_30d_count,
sum(if(dt>=date_add('2020-06-14',-29),login_count,0)) login_last_30d_count,
sum(visit_count) visit_count,
sum(login_count) login_count,
sum(if(dt='2020-06-14',order_count,0)) order_last_1d_count,
sum(if(dt='2020-06-14',order_original_amount,0)) order_last_1d_original_amount,
sum(if(dt='2020-06-14',order_final_amount,0)) order_last_1d_final_amount,
sum(if(dt>=date_add('2020-06-14',-6),order_count,0)) order_last_7d_count,
sum(if(dt>=date_add('2020-06-14',-6),order_original_amount,0)) order_last_7d_original_amount,
sum(if(dt>=date_add('2020-06-14',-6),order_final_amount,0)) order_last_7d_final_amount,
sum(if(dt>=date_add('2020-06-14',-29),order_count,0)) order_last_30d_count,
sum(if(dt>=date_add('2020-06-14',-29),order_original_amount,0)) order_last_30d_original_amount,
sum(if(dt>=date_add('2020-06-14',-29),order_final_amount,0)) order_last_30d_final_amount,
sum(order_count) order_count,
sum(order_original_amount) order_original_amount,
sum(order_final_amount) order_final_amount,
sum(if(dt='2020-06-14',payment_count,0)) payment_last_1d_count,
sum(if(dt='2020-06-14',payment_amount,0)) payment_last_1d_amount,
sum(if(dt>=date_add('2020-06-14',-6),payment_count,0)) payment_last_7d_count,
sum(if(dt>=date_add('2020-06-14',-6),payment_amount,0)) payment_last_7d_amount,
sum(if(dt>=date_add('2020-06-14',-29),payment_count,0)) payment_last_30d_count,
sum(if(dt>=date_add('2020-06-14',-29),payment_amount,0)) payment_last_30d_amount,
sum(payment_count) payment_count,
sum(payment_amount) payment_amount,
sum(if(dt='2020-06-14',refund_order_count,0)) refund_order_last_1d_count,
sum(if(dt='2020-06-14',refund_order_amount,0)) refund_order_last_1d_amount,
sum(if(dt>=date_add('2020-06-14',-6),refund_order_count,0)) refund_order_last_7d_count,
sum(if(dt>=date_add('2020-06-14',-6),refund_order_amount,0)) refund_order_last_7d_amount,
sum(if(dt>=date_add('2020-06-14',-29),refund_order_count,0)) refund_order_last_30d_count,
sum(if(dt>=date_add('2020-06-14',-29),refund_order_amount,0)) refund_order_last_30d_amount,
sum(refund_order_count) refund_order_count,
sum(refund_order_amount) refund_order_amount,
sum(if(dt='2020-06-14',refund_payment_count,0)) refund_payment_last_1d_count,
sum(if(dt='2020-06-14',refund_payment_amount,0)) refund_payment_last_1d_amount,
sum(if(dt>=date_add('2020-06-14',-6),refund_payment_count,0)) refund_payment_last_7d_count,
sum(if(dt>=date_add('2020-06-14',-6),refund_payment_amount,0)) refund_payment_last_7d_amount,
sum(if(dt>=date_add('2020-06-14',-29),refund_payment_count,0)) refund_payment_last_30d_count,
sum(if(dt>=date_add('2020-06-14',-29),refund_payment_amount,0)) refund_payment_last_30d_amount,
sum(refund_payment_count) refund_payment_count,
sum(refund_payment_amount) refund_payment_amount
from dws_area_stats_daycount
group by province_id
)t2
on t1.id=t2.province_id;
(2)每日装载
insert overwrite table dwt_area_topic partition(dt='2020-06-15')
select
nvl(old.province_id, 1d_ago.province_id),
nvl(1d_ago.visit_count,0),
nvl(1d_ago.login_count,0),
nvl(old.visit_last_7d_count,0)+nvl(1d_ago.visit_count,0)- nvl(7d_ago.visit_count,0),
nvl(old.login_last_7d_count,0)+nvl(1d_ago.login_count,0)- nvl(7d_ago.login_count,0),
nvl(old.visit_last_30d_count,0)+nvl(1d_ago.visit_count,0)- nvl(30d_ago.visit_count,0),
nvl(old.login_last_30d_count,0)+nvl(1d_ago.login_count,0)- nvl(30d_ago.login_count,0),
nvl(old.visit_count,0)+nvl(1d_ago.visit_count,0),
nvl(old.login_count,0)+nvl(1d_ago.login_count,0),
nvl(1d_ago.order_count,0),
nvl(1d_ago.order_original_amount,0.0),
nvl(1d_ago.order_final_amount,0.0),
nvl(old.order_last_7d_count,0)+nvl(1d_ago.order_count,0)- nvl(7d_ago.order_count,0),
nvl(old.order_last_7d_original_amount,0.0)+nvl(1d_ago.order_original_amount,0.0)- nvl(7d_ago.order_original_amount,0.0),
nvl(old.order_last_7d_final_amount,0.0)+nvl(1d_ago.order_final_amount,0.0)- nvl(7d_ago.order_final_amount,0.0),
nvl(old.order_last_30d_count,0)+nvl(1d_ago.order_count,0)- nvl(30d_ago.order_count,0),
nvl(old.order_last_30d_original_amount,0.0)+nvl(1d_ago.order_original_amount,0.0)- nvl(30d_ago.order_original_amount,0.0),
nvl(old.order_last_30d_final_amount,0.0)+nvl(1d_ago.order_final_amount,0.0)- nvl(30d_ago.order_final_amount,0.0),
nvl(old.order_count,0)+nvl(1d_ago.order_count,0),
nvl(old.order_original_amount,0.0)+nvl(1d_ago.order_original_amount,0.0),
nvl(old.order_final_amount,0.0)+nvl(1d_ago.order_final_amount,0.0),
nvl(1d_ago.payment_count,0),
nvl(1d_ago.payment_amount,0.0),
nvl(old.payment_last_7d_count,0)+nvl(1d_ago.payment_count,0)- nvl(7d_ago.payment_count,0),
nvl(old.payment_last_7d_amount,0.0)+nvl(1d_ago.payment_amount,0.0)- nvl(7d_ago.payment_amount,0.0),
nvl(old.payment_last_30d_count,0)+nvl(1d_ago.payment_count,0)- nvl(30d_ago.payment_count,0),
nvl(old.payment_last_30d_amount,0.0)+nvl(1d_ago.payment_amount,0.0)- nvl(30d_ago.payment_amount,0.0),
nvl(old.payment_count,0)+nvl(1d_ago.payment_count,0),
nvl(old.payment_amount,0.0)+nvl(1d_ago.payment_amount,0.0),
nvl(1d_ago.refund_order_count,0),
nvl(1d_ago.refund_order_amount,0.0),
nvl(old.refund_order_last_7d_count,0)+nvl(1d_ago.refund_order_count,0)- nvl(7d_ago.refund_order_count,0),
nvl(old.refund_order_last_7d_amount,0.0)+nvl(1d_ago.refund_order_amount,0.0)- nvl(7d_ago.refund_order_amount,0.0),
nvl(old.refund_order_last_30d_count,0)+nvl(1d_ago.refund_order_count,0)- nvl(30d_ago.refund_order_count,0),
nvl(old.refund_order_last_30d_amount,0.0)+nvl(1d_ago.refund_order_amount,0.0)- nvl(30d_ago.refund_order_amount,0.0),
nvl(old.refund_order_count,0)+nvl(1d_ago.refund_order_count,0),
nvl(old.refund_order_amount,0.0)+nvl(1d_ago.refund_order_amount,0.0),
nvl(1d_ago.refund_payment_count,0),
nvl(1d_ago.refund_payment_amount,0.0),
nvl(old.refund_payment_last_7d_count,0)+nvl(1d_ago.refund_payment_count,0)- nvl(7d_ago.refund_payment_count,0),
nvl(old.refund_payment_last_7d_amount,0.0)+nvl(1d_ago.refund_payment_amount,0.0)- nvl(7d_ago.refund_payment_amount,0.0),
nvl(old.refund_payment_last_30d_count,0)+nvl(1d_ago.refund_payment_count,0)- nvl(30d_ago.refund_payment_count,0),
nvl(old.refund_payment_last_30d_amount,0.0)+nvl(1d_ago.refund_payment_amount,0.0)- nvl(30d_ago.refund_payment_amount,0.0),
nvl(old.refund_payment_count,0)+nvl(1d_ago.refund_payment_count,0),
nvl(old.refund_payment_amount,0.0)+nvl(1d_ago.refund_payment_amount,0.0)
from
(
select
province_id,
visit_last_1d_count,
login_last_1d_count,
visit_last_7d_count,
login_last_7d_count,
visit_last_30d_count,
login_last_30d_count,
visit_count,
login_count,
order_last_1d_count,
order_last_1d_original_amount,
order_last_1d_final_amount,
order_last_7d_count,
order_last_7d_original_amount,
order_last_7d_final_amount,
order_last_30d_count,
order_last_30d_original_amount,
order_last_30d_final_amount,
order_count,
order_original_amount,
order_final_amount,
payment_last_1d_count,
payment_last_1d_amount,
payment_last_7d_count,
payment_last_7d_amount,
payment_last_30d_count,
payment_last_30d_amount,
payment_count,
payment_amount,
refund_order_last_1d_count,
refund_order_last_1d_amount,
refund_order_last_7d_count,
refund_order_last_7d_amount,
refund_order_last_30d_count,
refund_order_last_30d_amount,
refund_order_count,
refund_order_amount,
refund_payment_last_1d_count,
refund_payment_last_1d_amount,
refund_payment_last_7d_count,
refund_payment_last_7d_amount,
refund_payment_last_30d_count,
refund_payment_last_30d_amount,
refund_payment_count,
refund_payment_amount
from dwt_area_topic
where dt=date_add('2020-06-15',-1)
)old
full outer join
(
select
province_id,
visit_count,
login_count,
order_count,
order_original_amount,
order_final_amount,
payment_count,
payment_amount,
refund_order_count,
refund_order_amount,
refund_payment_count,
refund_payment_amount
from dws_area_stats_daycount
where dt='2020-06-15'
)1d_ago
on old.province_id=1d_ago.province_id
left join
(
select
province_id,
visit_count,
login_count,
order_count,
order_original_amount,
order_final_amount,
payment_count,
payment_amount,
refund_order_count,
refund_order_amount,
refund_payment_count,
refund_payment_amount
from dws_area_stats_daycount
where dt=date_add('2020-06-15',-7)
)7d_ago
on old.province_id= 7d_ago.province_id
left join
(
select
province_id,
visit_count,
login_count,
order_count,
order_original_amount,
order_final_amount,
payment_count,
payment_amount,
refund_order_count,
refund_order_amount,
refund_payment_count,
refund_payment_amount
from dws_area_stats_daycount
where dt=date_add('2020-06-15',-30)
)30d_ago
on old.province_id= 30d_ago.province_id;
3)查询加载结果
5.7 DWT层首日数据导入脚本
)编写脚本
(1)在/home/atguigu/bin目录下创建脚本dws_to_dwt_init.sh
[atguigu@hadoop102 bin]$ vim dws_to_dwt_init.sh
在脚本中填写如下内容
#!/bin/bash
APP=gmall
if [ -n "$2" ] ;then
do_date=$2
else
echo "请传入日期参数"
exit
fi
dwt_visitor_topic="
insert overwrite table ${APP}.dwt_visitor_topic partition(dt='$do_date')
select
nvl(1d_ago.mid_id,old.mid_id),
nvl(1d_ago.brand,old.brand),
nvl(1d_ago.model,old.model),
nvl(1d_ago.channel,old.channel),
nvl(1d_ago.os,old.os),
nvl(1d_ago.area_code,old.area_code),
nvl(1d_ago.version_code,old.version_code),
case when old.mid_id is null and 1d_ago.is_new=1 then '$do_date'
when old.mid_id is null and 1d_ago.is_new=0 then '2020-06-13'--无法获取准确的首次登录日期,给定一个数仓搭建日之前的日期
else old.visit_date_first end,
if(1d_ago.mid_id is not null,'$do_date',old.visit_date_last),
nvl(1d_ago.visit_count,0),
if(1d_ago.mid_id is null,0,1),
nvl(old.visit_last_7d_count,0)+nvl(1d_ago.visit_count,0)- nvl(7d_ago.visit_count,0),
nvl(old.visit_last_7d_day_count,0)+if(1d_ago.mid_id is null,0,1)- if(7d_ago.mid_id is null,0,1),
nvl(old.visit_last_30d_count,0)+nvl(1d_ago.visit_count,0)- nvl(30d_ago.visit_count,0),
nvl(old.visit_last_30d_day_count,0)+if(1d_ago.mid_id is null,0,1)- if(30d_ago.mid_id is null,0,1),
nvl(old.visit_count,0)+nvl(1d_ago.visit_count,0),
nvl(old.visit_day_count,0)+if(1d_ago.mid_id is null,0,1)
from
(
select
mid_id,
brand,
model,
channel,
os,
area_code,
version_code,
visit_date_first,
visit_date_last,
visit_last_1d_count,
visit_last_1d_day_count,
visit_last_7d_count,
visit_last_7d_day_count,
visit_last_30d_count,
visit_last_30d_day_count,
visit_count,
visit_day_count
from ${APP}.dwt_visitor_topic
where dt=date_add('$do_date',-1)
)old
full outer join
(
select
mid_id,
brand,
model,
is_new,
channel,
os,
area_code,
version_code,
visit_count
from ${APP}.dws_visitor_action_daycount
where dt='$do_date'
)1d_ago
on old.mid_id=1d_ago.mid_id
left join
(
select
mid_id,
brand,
model,
is_new,
channel,
os,
area_code,
version_code,
visit_count
from ${APP}.dws_visitor_action_daycount
where dt=date_add('$do_date',-7)
)7d_ago
on old.mid_id=7d_ago.mid_id
left join
(
select
mid_id,
brand,
model,
is_new,
channel,
os,
area_code,
version_code,
visit_count
from ${APP}.dws_visitor_action_daycount
where dt=date_add('$do_date',-30)
)30d_ago
on old.mid_id=30d_ago.mid_id;
"
dwt_user_topic="
insert overwrite table ${APP}.dwt_user_topic partition(dt='$do_date')
select
id,
login_date_first,--以用户的创建日期作为首次登录日期
nvl(login_date_last,date_add('$do_date',-1)),--若有历史登录记录,则根据历史记录获取末次登录日期,否则统一指定一个日期
nvl(login_last_1d_count,0),
nvl(login_last_1d_day_count,0),
nvl(login_last_7d_count,0),
nvl(login_last_7d_day_count,0),
nvl(login_last_30d_count,0),
nvl(login_last_30d_day_count,0),
nvl(login_count,0),
nvl(login_day_count,0),
order_date_first,
order_date_last,
nvl(order_last_1d_count,0),
nvl(order_activity_last_1d_count,0),
nvl(order_activity_reduce_last_1d_amount,0),
nvl(order_coupon_last_1d_count,0),
nvl(order_coupon_reduce_last_1d_amount,0),
nvl(order_last_1d_original_amount,0),
nvl(order_last_1d_final_amount,0),
nvl(order_last_7d_count,0),
nvl(order_activity_last_7d_count,0),
nvl(order_activity_reduce_last_7d_amount,0),
nvl(order_coupon_last_7d_count,0),
nvl(order_coupon_reduce_last_7d_amount,0),
nvl(order_last_7d_original_amount,0),
nvl(order_last_7d_final_amount,0),
nvl(order_last_30d_count,0),
nvl(order_activity_last_30d_count,0),
nvl(order_activity_reduce_last_30d_amount,0),
nvl(order_coupon_last_30d_count,0),
nvl(order_coupon_reduce_last_30d_amount,0),
nvl(order_last_30d_original_amount,0),
nvl(order_last_30d_final_amount,0),
nvl(order_count,0),
nvl(order_activity_count,0),
nvl(order_activity_reduce_amount,0),
nvl(order_coupon_count,0),
nvl(order_coupon_reduce_amount,0),
nvl(order_original_amount,0),
nvl(order_final_amount,0),
payment_date_first,
payment_date_last,
nvl(payment_last_1d_count,0),
nvl(payment_last_1d_amount,0),
nvl(payment_last_7d_count,0),
nvl(payment_last_7d_amount,0),
nvl(payment_last_30d_count,0),
nvl(payment_last_30d_amount,0),
nvl(payment_count,0),
nvl(payment_amount,0),
nvl(refund_order_last_1d_count,0),
nvl(refund_order_last_1d_num,0),
nvl(refund_order_last_1d_amount,0),
nvl(refund_order_last_7d_count,0),
nvl(refund_order_last_7d_num,0),
nvl(refund_order_last_7d_amount,0),
nvl(refund_order_last_30d_count,0),
nvl(refund_order_last_30d_num,0),
nvl(refund_order_last_30d_amount,0),
nvl(refund_order_count,0),
nvl(refund_order_num,0),
nvl(refund_order_amount,0),
nvl(refund_payment_last_1d_count,0),
nvl(refund_payment_last_1d_num,0),
nvl(refund_payment_last_1d_amount,0),
nvl(refund_payment_last_7d_count,0),
nvl(refund_payment_last_7d_num,0),
nvl(refund_payment_last_7d_amount,0),
nvl(refund_payment_last_30d_count,0),
nvl(refund_payment_last_30d_num,0),
nvl(refund_payment_last_30d_amount,0),
nvl(refund_payment_count,0),
nvl(refund_payment_num,0),
nvl(refund_payment_amount,0),
nvl(cart_last_1d_count,0),
nvl(cart_last_7d_count,0),
nvl(cart_last_30d_count,0),
nvl(cart_count,0),
nvl(favor_last_1d_count,0),
nvl(favor_last_7d_count,0),
nvl(favor_last_30d_count,0),
nvl(favor_count,0),
nvl(coupon_last_1d_get_count,0),
nvl(coupon_last_1d_using_count,0),
nvl(coupon_last_1d_used_count,0),
nvl(coupon_last_7d_get_count,0),
nvl(coupon_last_7d_using_count,0),
nvl(coupon_last_7d_used_count,0),
nvl(coupon_last_30d_get_count,0),
nvl(coupon_last_30d_using_count,0),
nvl(coupon_last_30d_used_count,0),
nvl(coupon_get_count,0),
nvl(coupon_using_count,0),
nvl(coupon_used_count,0),
nvl(appraise_last_1d_good_count,0),
nvl(appraise_last_1d_mid_count,0),
nvl(appraise_last_1d_bad_count,0),
nvl(appraise_last_1d_default_count,0),
nvl(appraise_last_7d_good_count,0),
nvl(appraise_last_7d_mid_count,0),
nvl(appraise_last_7d_bad_count,0),
nvl(appraise_last_7d_default_count,0),
nvl(appraise_last_30d_good_count,0),
nvl(appraise_last_30d_mid_count,0),
nvl(appraise_last_30d_bad_count,0),
nvl(appraise_last_30d_default_count,0),
nvl(appraise_good_count,0),
nvl(appraise_mid_count,0),
nvl(appraise_bad_count,0),
nvl(appraise_default_count,0)
from
(
select
id,
date_format(create_time,'yyyy-MM-dd') login_date_first
from ${APP}.dim_user_info
where dt='9999-99-99'
)t1
left join
(
select
user_id user_id,
max(dt) login_date_last,
sum(if(dt='$do_date',login_count,0)) login_last_1d_count,
sum(if(dt='$do_date' and login_count>0,1,0)) login_last_1d_day_count,
sum(if(dt>=date_add('$do_date',-6),login_count,0)) login_last_7d_count,
sum(if(dt>=date_add('$do_date',-6) and login_count>0,1,0)) login_last_7d_day_count,
sum(if(dt>=date_add('$do_date',-29),login_count,0)) login_last_30d_count,
sum(if(dt>=date_add('$do_date',-29) and login_count>0,1,0)) login_last_30d_day_count,
sum(login_count) login_count,
sum(if(login_count>0,1,0)) login_day_count,
min(if(order_count>0,dt,null)) order_date_first,
max(if(order_count>0,dt,null)) order_date_last,
sum(if(dt='$do_date',order_count,0)) order_last_1d_count,
sum(if(dt='$do_date',order_activity_count,0)) order_activity_last_1d_count,
sum(if(dt='$do_date',order_activity_reduce_amount,0)) order_activity_reduce_last_1d_amount,
sum(if(dt='$do_date',order_coupon_count,0)) order_coupon_last_1d_count,
sum(if(dt='$do_date',order_coupon_reduce_amount,0)) order_coupon_reduce_last_1d_amount,
sum(if(dt='$do_date',order_original_amount,0)) order_last_1d_original_amount,
sum(if(dt='$do_date',order_final_amount,0)) order_last_1d_final_amount,
sum(if(dt>=date_add('$do_date',-6),order_count,0)) order_last_7d_count,
sum(if(dt>=date_add('$do_date',-6),order_activity_count,0)) order_activity_last_7d_count,
sum(if(dt>=date_add('$do_date',-6),order_activity_reduce_amount,0)) order_activity_reduce_last_7d_amount,
sum(if(dt>=date_add('$do_date',-6),order_coupon_count,0)) order_coupon_last_7d_count,
sum(if(dt>=date_add('$do_date',-6),order_coupon_reduce_amount,0)) order_coupon_reduce_last_7d_amount,
sum(if(dt>=date_add('$do_date',-6),order_original_amount,0)) order_last_7d_original_amount,
sum(if(dt>=date_add('$do_date',-6),order_final_amount,0)) order_last_7d_final_amount,
sum(if(dt>=date_add('$do_date',-29),order_count,0)) order_last_30d_count,
sum(if(dt>=date_add('$do_date',-29),order_activity_count,0)) order_activity_last_30d_count,
sum(if(dt>=date_add('$do_date',-29),order_activity_reduce_amount,0)) order_activity_reduce_last_30d_amount,
sum(if(dt>=date_add('$do_date',-29),order_coupon_count,0)) order_coupon_last_30d_count,
sum(if(dt>=date_add('$do_date',-29),order_coupon_reduce_amount,0)) order_coupon_reduce_last_30d_amount,
sum(if(dt>=date_add('$do_date',-29),order_original_amount,0)) order_last_30d_original_amount,
sum(if(dt>=date_add('$do_date',-29),order_final_amount,0)) order_last_30d_final_amount,
sum(order_count) order_count,
sum(order_activity_count) order_activity_count,
sum(order_activity_reduce_amount) order_activity_reduce_amount,
sum(order_coupon_count) order_coupon_count,
sum(order_coupon_reduce_amount) order_coupon_reduce_amount,
sum(order_original_amount) order_original_amount,
sum(order_final_amount) order_final_amount,
min(if(payment_count>0,dt,null)) payment_date_first,
max(if(payment_count>0,dt,null)) payment_date_last,
sum(if(dt='$do_date',payment_count,0)) payment_last_1d_count,
sum(if(dt='$do_date',payment_amount,0)) payment_last_1d_amount,
sum(if(dt>=date_add('$do_date',-6),payment_count,0)) payment_last_7d_count,
sum(if(dt>=date_add('$do_date',-6),payment_amount,0)) payment_last_7d_amount,
sum(if(dt>=date_add('$do_date',-29),payment_count,0)) payment_last_30d_count,
sum(if(dt>=date_add('$do_date',-29),payment_amount,0)) payment_last_30d_amount,
sum(payment_count) payment_count,
sum(payment_amount) payment_amount,
sum(if(dt='$do_date',refund_order_count,0)) refund_order_last_1d_count,
sum(if(dt='$do_date',refund_order_num,0)) refund_order_last_1d_num,
sum(if(dt='$do_date',refund_order_amount,0)) refund_order_last_1d_amount,
sum(if(dt>=date_add('$do_date',-6),refund_order_count,0)) refund_order_last_7d_count,
sum(if(dt>=date_add('$do_date',-6),refund_order_num,0)) refund_order_last_7d_num,
sum(if(dt>=date_add('$do_date',-6),refund_order_amount,0)) refund_order_last_7d_amount,
sum(if(dt>=date_add('$do_date',-29),refund_order_count,0)) refund_order_last_30d_count,
sum(if(dt>=date_add('$do_date',-29),refund_order_num,0)) refund_order_last_30d_num,
sum(if(dt>=date_add('$do_date',-29),refund_order_amount,0)) refund_order_last_30d_amount,
sum(refund_order_count) refund_order_count,
sum(refund_order_num) refund_order_num,
sum(refund_order_amount) refund_order_amount,
sum(if(dt='$do_date',refund_payment_count,0)) refund_payment_last_1d_count,
sum(if(dt='$do_date',refund_payment_num,0)) refund_payment_last_1d_num,
sum(if(dt='$do_date',refund_payment_amount,0)) refund_payment_last_1d_amount,
sum(if(dt>=date_add('$do_date',-6),refund_payment_count,0)) refund_payment_last_7d_count,
sum(if(dt>=date_add('$do_date',-6),refund_payment_num,0)) refund_payment_last_7d_num,
sum(if(dt>=date_add('$do_date',-6),refund_payment_amount,0)) refund_payment_last_7d_amount,
sum(if(dt>=date_add('$do_date',-29),refund_payment_count,0)) refund_payment_last_30d_count,
sum(if(dt>=date_add('$do_date',-29),refund_payment_num,0)) refund_payment_last_30d_num,
sum(if(dt>=date_add('$do_date',-29),refund_payment_amount,0)) refund_payment_last_30d_amount,
sum(refund_payment_count) refund_payment_count,
sum(refund_payment_num) refund_payment_num,
sum(refund_payment_amount) refund_payment_amount,
sum(if(dt='$do_date',cart_count,0)) cart_last_1d_count,
sum(if(dt>=date_add('$do_date',-6),cart_count,0)) cart_last_7d_count,
sum(if(dt>=date_add('$do_date',-29),cart_count,0)) cart_last_30d_count,
sum(cart_count) cart_count,
sum(if(dt='$do_date',favor_count,0)) favor_last_1d_count,
sum(if(dt>=date_add('$do_date',-6),favor_count,0)) favor_last_7d_count,
sum(if(dt>=date_add('$do_date',-29),favor_count,0)) favor_last_30d_count,
sum(favor_count) favor_count,
sum(if(dt='$do_date',coupon_get_count,0)) coupon_last_1d_get_count,
sum(if(dt='$do_date',coupon_using_count,0)) coupon_last_1d_using_count,
sum(if(dt='$do_date',coupon_used_count,0)) coupon_last_1d_used_count,
sum(if(dt>=date_add('$do_date',-6),coupon_get_count,0)) coupon_last_7d_get_count,
sum(if(dt>=date_add('$do_date',-6),coupon_using_count,0)) coupon_last_7d_using_count,
sum(if(dt>=date_add('$do_date',-6),coupon_used_count,0)) coupon_last_7d_used_count,
sum(if(dt>=date_add('$do_date',-29),coupon_get_count,0)) coupon_last_30d_get_count,
sum(if(dt>=date_add('$do_date',-29),coupon_using_count,0)) coupon_last_30d_using_count,
sum(if(dt>=date_add('$do_date',-29),coupon_used_count,0)) coupon_last_30d_used_count,
sum(coupon_get_count) coupon_get_count,
sum(coupon_using_count) coupon_using_count,
sum(coupon_used_count) coupon_used_count,
sum(if(dt='$do_date',appraise_good_count,0)) appraise_last_1d_good_count,
sum(if(dt='$do_date',appraise_mid_count,0)) appraise_last_1d_mid_count,
sum(if(dt='$do_date',appraise_bad_count,0)) appraise_last_1d_bad_count,
sum(if(dt='$do_date',appraise_default_count,0)) appraise_last_1d_default_count,
sum(if(dt>=date_add('$do_date',-6),appraise_good_count,0)) appraise_last_7d_good_count,
sum(if(dt>=date_add('$do_date',-6),appraise_mid_count,0)) appraise_last_7d_mid_count,
sum(if(dt>=date_add('$do_date',-6),appraise_bad_count,0)) appraise_last_7d_bad_count,
sum(if(dt>=date_add('$do_date',-6),appraise_default_count,0)) appraise_last_7d_default_count,
sum(if(dt>=date_add('$do_date',-29),appraise_good_count,0)) appraise_last_30d_good_count,
sum(if(dt>=date_add('$do_date',-29),appraise_mid_count,0)) appraise_last_30d_mid_count,
sum(if(dt>=date_add('$do_date',-29),appraise_bad_count,0)) appraise_last_30d_bad_count,
sum(if(dt>=date_add('$do_date',-29),appraise_default_count,0)) appraise_last_30d_default_count,
sum(appraise_good_count) appraise_good_count,
sum(appraise_mid_count) appraise_mid_count,
sum(appraise_bad_count) appraise_bad_count,
sum(appraise_default_count) appraise_default_count
from ${APP}.dws_user_action_daycount
group by user_id
)t2
on t1.id=t2.user_id;
"
dwt_sku_topic="
insert overwrite table ${APP}.dwt_sku_topic partition(dt='$do_date')
select
id,
nvl(order_last_1d_count,0),
nvl(order_last_1d_num,0),
nvl(order_activity_last_1d_count,0),
nvl(order_coupon_last_1d_count,0),
nvl(order_activity_reduce_last_1d_amount,0),
nvl(order_coupon_reduce_last_1d_amount,0),
nvl(order_last_1d_original_amount,0),
nvl(order_last_1d_final_amount,0),
nvl(order_last_7d_count,0),
nvl(order_last_7d_num,0),
nvl(order_activity_last_7d_count,0),
nvl(order_coupon_last_7d_count,0),
nvl(order_activity_reduce_last_7d_amount,0),
nvl(order_coupon_reduce_last_7d_amount,0),
nvl(order_last_7d_original_amount,0),
nvl(order_last_7d_final_amount,0),
nvl(order_last_30d_count,0),
nvl(order_last_30d_num,0),
nvl(order_activity_last_30d_count,0),
nvl(order_coupon_last_30d_count,0),
nvl(order_activity_reduce_last_30d_amount,0),
nvl(order_coupon_reduce_last_30d_amount,0),
nvl(order_last_30d_original_amount,0),
nvl(order_last_30d_final_amount,0),
nvl(order_count,0),
nvl(order_num,0),
nvl(order_activity_count,0),
nvl(order_coupon_count,0),
nvl(order_activity_reduce_amount,0),
nvl(order_coupon_reduce_amount,0),
nvl(order_original_amount,0),
nvl(order_final_amount,0),
nvl(payment_last_1d_count,0),
nvl(payment_last_1d_num,0),
nvl(payment_last_1d_amount,0),
nvl(payment_last_7d_count,0),
nvl(payment_last_7d_num,0),
nvl(payment_last_7d_amount,0),
nvl(payment_last_30d_count,0),
nvl(payment_last_30d_num,0),
nvl(payment_last_30d_amount,0),
nvl(payment_count,0),
nvl(payment_num,0),
nvl(payment_amount,0),
nvl(refund_order_last_1d_count,0),
nvl(refund_order_last_1d_num,0),
nvl(refund_order_last_1d_amount,0),
nvl(refund_order_last_7d_count,0),
nvl(refund_order_last_7d_num,0),
nvl(refund_order_last_7d_amount,0),
nvl(refund_order_last_30d_count,0),
nvl(refund_order_last_30d_num,0),
nvl(refund_order_last_30d_amount,0),
nvl(refund_order_count,0),
nvl(refund_order_num,0),
nvl(refund_order_amount,0),
nvl(refund_payment_last_1d_count,0),
nvl(refund_payment_last_1d_num,0),
nvl(refund_payment_last_1d_amount,0),
nvl(refund_payment_last_7d_count,0),
nvl(refund_payment_last_7d_num,0),
nvl(refund_payment_last_7d_amount,0),
nvl(refund_payment_last_30d_count,0),
nvl(refund_payment_last_30d_num,0),
nvl(refund_payment_last_30d_amount,0),
nvl(refund_payment_count,0),
nvl(refund_payment_num,0),
nvl(refund_payment_amount,0),
nvl(cart_last_1d_count,0),
nvl(cart_last_7d_count,0),
nvl(cart_last_30d_count,0),
nvl(cart_count,0),
nvl(favor_last_1d_count,0),
nvl(favor_last_7d_count,0),
nvl(favor_last_30d_count,0),
nvl(favor_count,0),
nvl(appraise_last_1d_good_count,0),
nvl(appraise_last_1d_mid_count,0),
nvl(appraise_last_1d_bad_count,0),
nvl(appraise_last_1d_default_count,0),
nvl(appraise_last_7d_good_count,0),
nvl(appraise_last_7d_mid_count,0),
nvl(appraise_last_7d_bad_count,0),
nvl(appraise_last_7d_default_count,0),
nvl(appraise_last_30d_good_count,0),
nvl(appraise_last_30d_mid_count,0),
nvl(appraise_last_30d_bad_count,0),
nvl(appraise_last_30d_default_count,0),
nvl(appraise_good_count,0),
nvl(appraise_mid_count,0),
nvl(appraise_bad_count,0),
nvl(appraise_default_count,0)
from
(
select
id
from ${APP}.dim_sku_info
where dt='$do_date'
)t1
left join
(
select
sku_id,
sum(if(dt='$do_date',order_count,0)) order_last_1d_count,
sum(if(dt='$do_date',order_num,0)) order_last_1d_num,
sum(if(dt='$do_date',order_activity_count,0)) order_activity_last_1d_count,
sum(if(dt='$do_date',order_coupon_count,0)) order_coupon_last_1d_count,
sum(if(dt='$do_date',order_activity_reduce_amount,0)) order_activity_reduce_last_1d_amount,
sum(if(dt='$do_date',order_coupon_reduce_amount,0)) order_coupon_reduce_last_1d_amount,
sum(if(dt='$do_date',order_original_amount,0)) order_last_1d_original_amount,
sum(if(dt='$do_date',order_final_amount,0)) order_last_1d_final_amount,
sum(if(dt>=date_add('$do_date',-6),order_count,0)) order_last_7d_count,
sum(if(dt>=date_add('$do_date',-6),order_num,0)) order_last_7d_num,
sum(if(dt>=date_add('$do_date',-6),order_activity_count,0)) order_activity_last_7d_count,
sum(if(dt>=date_add('$do_date',-6),order_coupon_count,0)) order_coupon_last_7d_count,
sum(if(dt>=date_add('$do_date',-6),order_activity_reduce_amount,0)) order_activity_reduce_last_7d_amount,
sum(if(dt>=date_add('$do_date',-6),order_coupon_reduce_amount,0)) order_coupon_reduce_last_7d_amount,
sum(if(dt>=date_add('$do_date',-6),order_original_amount,0)) order_last_7d_original_amount,
sum(if(dt>=date_add('$do_date',-6),order_final_amount,0)) order_last_7d_final_amount,
sum(if(dt>=date_add('$do_date',-29),order_count,0)) order_last_30d_count,
sum(if(dt>=date_add('$do_date',-29),order_num,0)) order_last_30d_num,
sum(if(dt>=date_add('$do_date',-29),order_activity_count,0)) order_activity_last_30d_count,
sum(if(dt>=date_add('$do_date',-29),order_coupon_count,0)) order_coupon_last_30d_count,
sum(if(dt>=date_add('$do_date',-29),order_activity_reduce_amount,0)) order_activity_reduce_last_30d_amount,
sum(if(dt>=date_add('$do_date',-29),order_coupon_reduce_amount,0)) order_coupon_reduce_last_30d_amount,
sum(if(dt>=date_add('$do_date',-29),order_original_amount,0)) order_last_30d_original_amount,
sum(if(dt>=date_add('$do_date',-29),order_final_amount,0)) order_last_30d_final_amount,
sum(order_count) order_count,
sum(order_num) order_num,
sum(order_activity_count) order_activity_count,
sum(order_coupon_count) order_coupon_count,
sum(order_activity_reduce_amount) order_activity_reduce_amount,
sum(order_coupon_reduce_amount) order_coupon_reduce_amount,
sum(order_original_amount) order_original_amount,
sum(order_final_amount) order_final_amount,
sum(if(dt='$do_date',payment_count,0)) payment_last_1d_count,
sum(if(dt='$do_date',payment_num,0)) payment_last_1d_num,
sum(if(dt='$do_date',payment_amount,0)) payment_last_1d_amount,
sum(if(dt>=date_add('$do_date',-6),payment_count,0)) payment_last_7d_count,
sum(if(dt>=date_add('$do_date',-6),payment_num,0)) payment_last_7d_num,
sum(if(dt>=date_add('$do_date',-6),payment_amount,0)) payment_last_7d_amount,
sum(if(dt>=date_add('$do_date',-29),payment_count,0)) payment_last_30d_count,
sum(if(dt>=date_add('$do_date',-29),payment_num,0)) payment_last_30d_num,
sum(if(dt>=date_add('$do_date',-29),payment_amount,0)) payment_last_30d_amount,
sum(payment_count) payment_count,
sum(payment_num) payment_num,
sum(payment_amount) payment_amount,
sum(if(dt='$do_date',refund_order_count,0)) refund_order_last_1d_count,
sum(if(dt='$do_date',refund_order_num,0)) refund_order_last_1d_num,
sum(if(dt='$do_date',refund_order_amount,0)) refund_order_last_1d_amount,
sum(if(dt>=date_add('$do_date',-6),refund_order_count,0)) refund_order_last_7d_count,
sum(if(dt>=date_add('$do_date',-6),refund_order_num,0)) refund_order_last_7d_num,
sum(if(dt>=date_add('$do_date',-6),refund_order_amount,0)) refund_order_last_7d_amount,
sum(if(dt>=date_add('$do_date',-29),refund_order_count,0)) refund_order_last_30d_count,
sum(if(dt>=date_add('$do_date',-29),refund_order_num,0)) refund_order_last_30d_num,
sum(if(dt>=date_add('$do_date',-29),refund_order_amount,0)) refund_order_last_30d_amount,
sum(refund_order_count) refund_order_count,
sum(refund_order_num) refund_order_num,
sum(refund_order_amount) refund_order_amount,
sum(if(dt='$do_date',refund_payment_count,0)) refund_payment_last_1d_count,
sum(if(dt='$do_date',refund_payment_num,0)) refund_payment_last_1d_num,
sum(if(dt='$do_date',refund_payment_amount,0)) refund_payment_last_1d_amount,
sum(if(dt>=date_add('$do_date',-6),refund_payment_count,0)) refund_payment_last_7d_count,
sum(if(dt>=date_add('$do_date',-6),refund_payment_num,0)) refund_payment_last_7d_num,
sum(if(dt>=date_add('$do_date',-6),refund_payment_amount,0)) refund_payment_last_7d_amount,
sum(if(dt>=date_add('$do_date',-29),refund_payment_count,0)) refund_payment_last_30d_count,
sum(if(dt>=date_add('$do_date',-29),refund_payment_num,0)) refund_payment_last_30d_num,
sum(if(dt>=date_add('$do_date',-29),refund_payment_amount,0)) refund_payment_last_30d_amount,
sum(refund_payment_count) refund_payment_count,
sum(refund_payment_num) refund_payment_num,
sum(refund_payment_amount) refund_payment_amount,
sum(if(dt='$do_date',cart_count,0)) cart_last_1d_count,
sum(if(dt>=date_add('$do_date',-6),cart_count,0)) cart_last_7d_count,
sum(if(dt>=date_add('$do_date',-29),cart_count,0)) cart_last_30d_count,
sum(cart_count) cart_count,
sum(if(dt='$do_date',favor_count,0)) favor_last_1d_count,
sum(if(dt>=date_add('$do_date',-6),favor_count,0)) favor_last_7d_count,
sum(if(dt>=date_add('$do_date',-29),favor_count,0)) favor_last_30d_count,
sum(favor_count) favor_count,
sum(if(dt='$do_date',appraise_good_count,0)) appraise_last_1d_good_count,
sum(if(dt='$do_date',appraise_mid_count,0)) appraise_last_1d_mid_count,
sum(if(dt='$do_date',appraise_bad_count,0)) appraise_last_1d_bad_count,
sum(if(dt='$do_date',appraise_default_count,0)) appraise_last_1d_default_count,
sum(if(dt>=date_add('$do_date',-6),appraise_good_count,0)) appraise_last_7d_good_count,
sum(if(dt>=date_add('$do_date',-6),appraise_mid_count,0)) appraise_last_7d_mid_count,
sum(if(dt>=date_add('$do_date',-6),appraise_bad_count,0)) appraise_last_7d_bad_count,
sum(if(dt>=date_add('$do_date',-6),appraise_default_count,0)) appraise_last_7d_default_count,
sum(if(dt>=date_add('$do_date',-29),appraise_good_count,0)) appraise_last_30d_good_count,
sum(if(dt>=date_add('$do_date',-29),appraise_mid_count,0)) appraise_last_30d_mid_count,
sum(if(dt>=date_add('$do_date',-29),appraise_bad_count,0)) appraise_last_30d_bad_count,
sum(if(dt>=date_add('$do_date',-29),appraise_default_count,0)) appraise_last_30d_default_count,
sum(appraise_good_count) appraise_good_count,
sum(appraise_mid_count) appraise_mid_count,
sum(appraise_bad_count) appraise_bad_count,
sum(appraise_default_count) appraise_default_count
from ${APP}.dws_sku_action_daycount
group by sku_id
)t2
on t1.id=t2.sku_id;
"
dwt_coupon_topic="
insert overwrite table ${APP}.dwt_coupon_topic partition(dt='$do_date')
select
id,
nvl(get_last_1d_count,0),
nvl(get_last_7d_count,0),
nvl(get_last_30d_count,0),
nvl(get_count,0),
nvl(order_last_1d_count,0),
nvl(order_last_1d_reduce_amount,0),
nvl(order_last_1d_original_amount,0),
nvl(order_last_1d_final_amount,0),
nvl(order_last_7d_count,0),
nvl(order_last_7d_reduce_amount,0),
nvl(order_last_7d_original_amount,0),
nvl(order_last_7d_final_amount,0),
nvl(order_last_30d_count,0),
nvl(order_last_30d_reduce_amount,0),
nvl(order_last_30d_original_amount,0),
nvl(order_last_30d_final_amount,0),
nvl(order_count,0),
nvl(order_reduce_amount,0),
nvl(order_original_amount,0),
nvl(order_final_amount,0),
nvl(payment_last_1d_count,0),
nvl(payment_last_1d_reduce_amount,0),
nvl(payment_last_1d_amount,0),
nvl(payment_last_7d_count,0),
nvl(payment_last_7d_reduce_amount,0),
nvl(payment_last_7d_amount,0),
nvl(payment_last_30d_count,0),
nvl(payment_last_30d_reduce_amount,0),
nvl(payment_last_30d_amount,0),
nvl(payment_count,0),
nvl(payment_reduce_amount,0),
nvl(payment_amount,0),
nvl(expire_last_1d_count,0),
nvl(expire_last_7d_count,0),
nvl(expire_last_30d_count,0),
nvl(expire_count,0)
from
(
select
id
from ${APP}.dim_coupon_info
where dt='$do_date'
)t1
left join
(
select
coupon_id coupon_id,
sum(if(dt='$do_date',get_count,0)) get_last_1d_count,
sum(if(dt>=date_add('$do_date',-6),get_count,0)) get_last_7d_count,
sum(if(dt>=date_add('$do_date',-29),get_count,0)) get_last_30d_count,
sum(get_count) get_count,
sum(if(dt='$do_date',order_count,0)) order_last_1d_count,
sum(if(dt='$do_date',order_reduce_amount,0)) order_last_1d_reduce_amount,
sum(if(dt='$do_date',order_original_amount,0)) order_last_1d_original_amount,
sum(if(dt='$do_date',order_final_amount,0)) order_last_1d_final_amount,
sum(if(dt>=date_add('$do_date',-6),order_count,0)) order_last_7d_count,
sum(if(dt>=date_add('$do_date',-6),order_reduce_amount,0)) order_last_7d_reduce_amount,
sum(if(dt>=date_add('$do_date',-6),order_original_amount,0)) order_last_7d_original_amount,
sum(if(dt>=date_add('$do_date',-6),order_final_amount,0)) order_last_7d_final_amount,
sum(if(dt>=date_add('$do_date',-29),order_count,0)) order_last_30d_count,
sum(if(dt>=date_add('$do_date',-29),order_reduce_amount,0)) order_last_30d_reduce_amount,
sum(if(dt>=date_add('$do_date',-29),order_original_amount,0)) order_last_30d_original_amount,
sum(if(dt>=date_add('$do_date',-29),order_final_amount,0)) order_last_30d_final_amount,
sum(order_count) order_count,
sum(order_reduce_amount) order_reduce_amount,
sum(order_original_amount) order_original_amount,
sum(order_final_amount) order_final_amount,
sum(if(dt='$do_date',payment_count,0)) payment_last_1d_count,
sum(if(dt='$do_date',payment_reduce_amount,0)) payment_last_1d_reduce_amount,
sum(if(dt='$do_date',payment_amount,0)) payment_last_1d_amount,
sum(if(dt>=date_add('$do_date',-6),payment_count,0)) payment_last_7d_count,
sum(if(dt>=date_add('$do_date',-6),payment_reduce_amount,0)) payment_last_7d_reduce_amount,
sum(if(dt>=date_add('$do_date',-6),payment_amount,0)) payment_last_7d_amount,
sum(if(dt>=date_add('$do_date',-29),payment_count,0)) payment_last_30d_count,
sum(if(dt>=date_add('$do_date',-29),payment_reduce_amount,0)) payment_last_30d_reduce_amount,
sum(if(dt>=date_add('$do_date',-29),payment_amount,0)) payment_last_30d_amount,
sum(payment_count) payment_count,
sum(payment_reduce_amount) payment_reduce_amount,
sum(payment_amount) payment_amount,
sum(if(dt='$do_date',expire_count,0)) expire_last_1d_count,
sum(if(dt>=date_add('$do_date',-6),expire_count,0)) expire_last_7d_count,
sum(if(dt>=date_add('$do_date',-29),expire_count,0)) expire_last_30d_count,
sum(expire_count) expire_count
from ${APP}.dws_coupon_info_daycount
group by coupon_id
)t2
on t1.id=t2.coupon_id;
"
dwt_activity_topic="
insert overwrite table ${APP}.dwt_activity_topic partition(dt='$do_date')
select
t1.activity_rule_id,
t1.activity_id,
nvl(order_last_1d_count,0),
nvl(order_last_1d_reduce_amount,0),
nvl(order_last_1d_original_amount,0),
nvl(order_last_1d_final_amount,0),
nvl(order_count,0),
nvl(order_reduce_amount,0),
nvl(order_original_amount,0),
nvl(order_final_amount,0),
nvl(payment_last_1d_count,0),
nvl(payment_last_1d_reduce_amount,0),
nvl(payment_last_1d_amount,0),
nvl(payment_count,0),
nvl(payment_reduce_amount,0),
nvl(payment_amount,0)
from
(
select
activity_rule_id,
activity_id
from ${APP}.dim_activity_rule_info
where dt='$do_date'
)t1
left join
(
select
activity_rule_id,
activity_id,
sum(if(dt='$do_date',order_count,0)) order_last_1d_count,
sum(if(dt='$do_date',order_reduce_amount,0)) order_last_1d_reduce_amount,
sum(if(dt='$do_date',order_original_amount,0)) order_last_1d_original_amount,
sum(if(dt='$do_date',order_final_amount,0)) order_last_1d_final_amount,
sum(order_count) order_count,
sum(order_reduce_amount) order_reduce_amount,
sum(order_original_amount) order_original_amount,
sum(order_final_amount) order_final_amount,
sum(if(dt='$do_date',payment_count,0)) payment_last_1d_count,
sum(if(dt='$do_date',payment_reduce_amount,0)) payment_last_1d_reduce_amount,
sum(if(dt='$do_date',payment_amount,0)) payment_last_1d_amount,
sum(payment_count) payment_count,
sum(payment_reduce_amount) payment_reduce_amount,
sum(payment_amount) payment_amount
from ${APP}.dws_activity_info_daycount
group by activity_rule_id,activity_id
)t2
on t1.activity_rule_id=t2.activity_rule_id
and t1.activity_id=t2.activity_id;
"
dwt_area_topic="
insert overwrite table ${APP}.dwt_area_topic partition(dt='$do_date')
select
id,
nvl(visit_last_1d_count,0),
nvl(login_last_1d_count,0),
nvl(visit_last_7d_count,0),
nvl(login_last_7d_count,0),
nvl(visit_last_30d_count,0),
nvl(login_last_30d_count,0),
nvl(visit_count,0),
nvl(login_count,0),
nvl(order_last_1d_count,0),
nvl(order_last_1d_original_amount,0),
nvl(order_last_1d_final_amount,0),
nvl(order_last_7d_count,0),
nvl(order_last_7d_original_amount,0),
nvl(order_last_7d_final_amount,0),
nvl(order_last_30d_count,0),
nvl(order_last_30d_original_amount,0),
nvl(order_last_30d_final_amount,0),
nvl(order_count,0),
nvl(order_original_amount,0),
nvl(order_final_amount,0),
nvl(payment_last_1d_count,0),
nvl(payment_last_1d_amount,0),
nvl(payment_last_7d_count,0),
nvl(payment_last_7d_amount,0),
nvl(payment_last_30d_count,0),
nvl(payment_last_30d_amount,0),
nvl(payment_count,0),
nvl(payment_amount,0),
nvl(refund_order_last_1d_count,0),
nvl(refund_order_last_1d_amount,0),
nvl(refund_order_last_7d_count,0),
nvl(refund_order_last_7d_amount,0),
nvl(refund_order_last_30d_count,0),
nvl(refund_order_last_30d_amount,0),
nvl(refund_order_count,0),
nvl(refund_order_amount,0),
nvl(refund_payment_last_1d_count,0),
nvl(refund_payment_last_1d_amount,0),
nvl(refund_payment_last_7d_count,0),
nvl(refund_payment_last_7d_amount,0),
nvl(refund_payment_last_30d_count,0),
nvl(refund_payment_last_30d_amount,0),
nvl(refund_payment_count,0),
nvl(refund_payment_amount,0)
from
(
select
id
from ${APP}.dim_base_province
)t1
left join
(
select
province_id province_id,
sum(if(dt='$do_date',visit_count,0)) visit_last_1d_count,
sum(if(dt='$do_date',login_count,0)) login_last_1d_count,
sum(if(dt>=date_add('$do_date',-6),visit_count,0)) visit_last_7d_count,
sum(if(dt>=date_add('$do_date',-6),login_count,0)) login_last_7d_count,
sum(if(dt>=date_add('$do_date',-29),visit_count,0)) visit_last_30d_count,
sum(if(dt>=date_add('$do_date',-29),login_count,0)) login_last_30d_count,
sum(visit_count) visit_count,
sum(login_count) login_count,
sum(if(dt='$do_date',order_count,0)) order_last_1d_count,
sum(if(dt='$do_date',order_original_amount,0)) order_last_1d_original_amount,
sum(if(dt='$do_date',order_final_amount,0)) order_last_1d_final_amount,
sum(if(dt>=date_add('$do_date',-6),order_count,0)) order_last_7d_count,
sum(if(dt>=date_add('$do_date',-6),order_original_amount,0)) order_last_7d_original_amount,
sum(if(dt>=date_add('$do_date',-6),order_final_amount,0)) order_last_7d_final_amount,
sum(if(dt>=date_add('$do_date',-29),order_count,0)) order_last_30d_count,
sum(if(dt>=date_add('$do_date',-29),order_original_amount,0)) order_last_30d_original_amount,
sum(if(dt>=date_add('$do_date',-29),order_final_amount,0)) order_last_30d_final_amount,
sum(order_count) order_count,
sum(order_original_amount) order_original_amount,
sum(order_final_amount) order_final_amount,
sum(if(dt='$do_date',payment_count,0)) payment_last_1d_count,
sum(if(dt='$do_date',payment_amount,0)) payment_last_1d_amount,
sum(if(dt>=date_add('$do_date',-6),payment_count,0)) payment_last_7d_count,
sum(if(dt>=date_add('$do_date',-6),payment_amount,0)) payment_last_7d_amount,
sum(if(dt>=date_add('$do_date',-29),payment_count,0)) payment_last_30d_count,
sum(if(dt>=date_add('$do_date',-29),payment_amount,0)) payment_last_30d_amount,
sum(payment_count) payment_count,
sum(payment_amount) payment_amount,
sum(if(dt='$do_date',refund_order_count,0)) refund_order_last_1d_count,
sum(if(dt='$do_date',refund_order_amount,0)) refund_order_last_1d_amount,
sum(if(dt>=date_add('$do_date',-6),refund_order_count,0)) refund_order_last_7d_count,
sum(if(dt>=date_add('$do_date',-6),refund_order_amount,0)) refund_order_last_7d_amount,
sum(if(dt>=date_add('$do_date',-29),refund_order_count,0)) refund_order_last_30d_count,
sum(if(dt>=date_add('$do_date',-29),refund_order_amount,0)) refund_order_last_30d_amount,
sum(refund_order_count) refund_order_count,
sum(refund_order_amount) refund_order_amount,
sum(if(dt='$do_date',refund_payment_count,0)) refund_payment_last_1d_count,
sum(if(dt='$do_date',refund_payment_amount,0)) refund_payment_last_1d_amount,
sum(if(dt>=date_add('$do_date',-6),refund_payment_count,0)) refund_payment_last_7d_count,
sum(if(dt>=date_add('$do_date',-6),refund_payment_amount,0)) refund_payment_last_7d_amount,
sum(if(dt>=date_add('$do_date',-29),refund_payment_count,0)) refund_payment_last_30d_count,
sum(if(dt>=date_add('$do_date',-29),refund_payment_amount,0)) refund_payment_last_30d_amount,
sum(refund_payment_count) refund_payment_count,
sum(refund_payment_amount) refund_payment_amount
from ${APP}.dws_area_stats_daycount
group by province_id
)t2
on t1.id=t2.province_id;
"
case $1 in
"dwt_visitor_topic" )
hive -e "$dwt_visitor_topic"
;;
"dwt_user_topic" )
hive -e "$dwt_user_topic"
;;
"dwt_sku_topic" )
hive -e "$dwt_sku_topic"
;;
"dwt_activity_topic" )
hive -e "$dwt_activity_topic"
;;
"dwt_coupon_topic" )
hive -e "$dwt_coupon_topic"
;;
"dwt_area_topic" )
hive -e "$dwt_area_topic"
;;
"all" )
hive -e "$dwt_visitor_topic$dwt_user_topic$dwt_sku_topic$dwt_activity_topic$dwt_coupon_topic$dwt_area_topic"
;;
esac
(2)增加执行权限
[atguigu@hadoop102 bin]$ chmod +x dws_to_dwt_init.sh
2)脚本使用
(1)执行脚本
[atguigu@hadoop102 bin]$ dws_to_dwt_init.sh all 2020-06-14
(2)查看数据是否导入成功
5.8 DWT层每日数据导入脚本
1)编写脚本
(1)在/home/atguigu/bin目录下创建脚本dws_to_dwt.sh
[atguigu@hadoop102 bin]$ vim dws_to_dwt.sh
在脚本中填写如下内容
#!/bin/bash
APP=gmall
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$2" ] ;then
do_date=$2
else
do_date=`date -d "-1 day" +%F`
fi
clear_date=`date -d "$do_date -2 day" +%F`
dwt_visitor_topic="
insert overwrite table ${APP}.dwt_visitor_topic partition(dt='$do_date')
select
nvl(1d_ago.mid_id,old.mid_id),
nvl(1d_ago.brand,old.brand),
nvl(1d_ago.model,old.model),
nvl(1d_ago.channel,old.channel),
nvl(1d_ago.os,old.os),
nvl(1d_ago.area_code,old.area_code),
nvl(1d_ago.version_code,old.version_code),
case when old.mid_id is null and 1d_ago.is_new=1 then '$do_date'
when old.mid_id is null and 1d_ago.is_new=0 then '2020-06-13'--无法获取准确的首次登录日期,给定一个数仓搭建日之前的日期
else old.visit_date_first end,
if(1d_ago.mid_id is not null,'$do_date',old.visit_date_last),
nvl(1d_ago.visit_count,0),
if(1d_ago.mid_id is null,0,1),
nvl(old.visit_last_7d_count,0)+nvl(1d_ago.visit_count,0)- nvl(7d_ago.visit_count,0),
nvl(old.visit_last_7d_day_count,0)+if(1d_ago.mid_id is null,0,1)- if(7d_ago.mid_id is null,0,1),
nvl(old.visit_last_30d_count,0)+nvl(1d_ago.visit_count,0)- nvl(30d_ago.visit_count,0),
nvl(old.visit_last_30d_day_count,0)+if(1d_ago.mid_id is null,0,1)- if(30d_ago.mid_id is null,0,1),
nvl(old.visit_count,0)+nvl(1d_ago.visit_count,0),
nvl(old.visit_day_count,0)+if(1d_ago.mid_id is null,0,1)
from
(
select
mid_id,
brand,
model,
channel,
os,
area_code,
version_code,
visit_date_first,
visit_date_last,
visit_last_1d_count,
visit_last_1d_day_count,
visit_last_7d_count,
visit_last_7d_day_count,
visit_last_30d_count,
visit_last_30d_day_count,
visit_count,
visit_day_count
from ${APP}.dwt_visitor_topic
where dt=date_add('$do_date',-1)
)old
full outer join
(
select
mid_id,
brand,
model,
is_new,
channel,
os,
area_code,
version_code,
visit_count
from ${APP}.dws_visitor_action_daycount
where dt='$do_date'
)1d_ago
on old.mid_id=1d_ago.mid_id
left join
(
select
mid_id,
brand,
model,
is_new,
channel,
os,
area_code,
version_code,
visit_count
from ${APP}.dws_visitor_action_daycount
where dt=date_add('$do_date',-7)
)7d_ago
on old.mid_id=7d_ago.mid_id
left join
(
select
mid_id,
brand,
model,
is_new,
channel,
os,
area_code,
version_code,
visit_count
from ${APP}.dws_visitor_action_daycount
where dt=date_add('$do_date',-30)
)30d_ago
on old.mid_id=30d_ago.mid_id;
alter table ${APP}.dwt_visitor_topic drop partition(dt='$clear_date');
"
dwt_user_topic="
insert overwrite table ${APP}.dwt_user_topic partition(dt='$do_date')
select
nvl(1d_ago.user_id,old.user_id),
nvl(old.login_date_first,'$do_date'),
if(1d_ago.user_id is not null,'$do_date',old.login_date_last),
nvl(1d_ago.login_count,0),
if(1d_ago.user_id is not null,1,0),
nvl(old.login_last_7d_count,0)+nvl(1d_ago.login_count,0)- nvl(7d_ago.login_count,0),
nvl(old.login_last_7d_day_count,0)+if(1d_ago.user_id is null,0,1)- if(7d_ago.user_id is null,0,1),
nvl(old.login_last_30d_count,0)+nvl(1d_ago.login_count,0)- nvl(30d_ago.login_count,0),
nvl(old.login_last_30d_day_count,0)+if(1d_ago.user_id is null,0,1)- if(30d_ago.user_id is null,0,1),
nvl(old.login_count,0)+nvl(1d_ago.login_count,0),
nvl(old.login_day_count,0)+if(1d_ago.user_id is not null,1,0),
if(old.order_date_first is null and 1d_ago.order_count>0, '$do_date', old.order_date_first),
if(1d_ago.order_count>0,'$do_date',old.order_date_last),
nvl(1d_ago.order_count,0),
nvl(1d_ago.order_activity_count,0),
nvl(1d_ago.order_activity_reduce_amount,0.0),
nvl(1d_ago.order_coupon_count,0),
nvl(1d_ago.order_coupon_reduce_amount,0.0),
nvl(1d_ago.order_original_amount,0.0),
nvl(1d_ago.order_final_amount,0.0),
nvl(old.order_last_7d_count,0)+nvl(1d_ago.order_count,0)- nvl(7d_ago.order_count,0),
nvl(old.order_activity_last_7d_count,0)+nvl(1d_ago.order_activity_count,0)- nvl(7d_ago.order_activity_count,0),
nvl(old.order_activity_reduce_last_7d_amount,0.0)+nvl(1d_ago.order_activity_reduce_amount,0.0)- nvl(7d_ago.order_activity_reduce_amount,0.0),
nvl(old.order_coupon_last_7d_count,0)+nvl(1d_ago.order_coupon_count,0)- nvl(7d_ago.order_coupon_count,0),
nvl(old.order_coupon_reduce_last_7d_amount,0.0)+nvl(1d_ago.order_coupon_reduce_amount,0.0)- nvl(7d_ago.order_coupon_reduce_amount,0.0),
nvl(old.order_last_7d_original_amount,0.0)+nvl(1d_ago.order_original_amount,0.0)- nvl(7d_ago.order_original_amount,0.0),
nvl(old.order_last_7d_final_amount,0.0)+nvl(1d_ago.order_final_amount,0.0)- nvl(7d_ago.order_final_amount,0.0),
nvl(old.order_last_30d_count,0)+nvl(1d_ago.order_count,0)- nvl(30d_ago.order_count,0),
nvl(old.order_activity_last_30d_count,0)+nvl(1d_ago.order_activity_count,0)- nvl(30d_ago.order_activity_count,0),
nvl(old.order_activity_reduce_last_30d_amount,0.0)+nvl(1d_ago.order_activity_reduce_amount,0.0)- nvl(30d_ago.order_activity_reduce_amount,0.0),
nvl(old.order_coupon_last_30d_count,0)+nvl(1d_ago.order_coupon_count,0)- nvl(30d_ago.order_coupon_count,0),
nvl(old.order_coupon_reduce_last_30d_amount,0.0)+nvl(1d_ago.order_coupon_reduce_amount,0.0)- nvl(30d_ago.order_coupon_reduce_amount,0.0),
nvl(old.order_last_30d_original_amount,0.0)+nvl(1d_ago.order_original_amount,0.0)- nvl(30d_ago.order_original_amount,0.0),
nvl(old.order_last_30d_final_amount,0.0)+nvl(1d_ago.order_final_amount,0.0)- nvl(30d_ago.order_final_amount,0.0),
nvl(old.order_count,0)+nvl(1d_ago.order_count,0),
nvl(old.order_activity_count,0)+nvl(1d_ago.order_activity_count,0),
nvl(old.order_activity_reduce_amount,0.0)+nvl(1d_ago.order_activity_reduce_amount,0.0),
nvl(old.order_coupon_count,0)+nvl(1d_ago.order_coupon_count,0),
nvl(old.order_coupon_reduce_amount,0.0)+nvl(1d_ago.order_coupon_reduce_amount,0.0),
nvl(old.order_original_amount,0.0)+nvl(1d_ago.order_original_amount,0.0),
nvl(old.order_final_amount,0.0)+nvl(1d_ago.order_final_amount,0.0),
if(old.payment_date_first is null and 1d_ago.payment_count>0, '$do_date', old.payment_date_first),
if(1d_ago.payment_count>0,'$do_date',old.payment_date_last),
nvl(1d_ago.payment_count,0),
nvl(1d_ago.payment_amount,0.0),
nvl(old.payment_last_7d_count,0)+nvl(1d_ago.payment_count,0)-nvl(7d_ago.payment_count,0),
nvl(old.payment_last_7d_amount,0.0)+nvl(1d_ago.payment_amount,0.0)-nvl(7d_ago.payment_amount,0.0),
nvl(old.payment_last_30d_count,0)+nvl(1d_ago.payment_count,0)-nvl(30d_ago.payment_count,0),
nvl(old.payment_last_30d_amount,0.0)+nvl(1d_ago.payment_amount,0.0)- nvl(30d_ago.payment_amount,0.0),
nvl(old.payment_count,0)+nvl(1d_ago.payment_count,0),
nvl(old.payment_amount,0.0)+nvl(1d_ago.payment_amount,0.0),
nvl(1d_ago.refund_order_count,0),
nvl(1d_ago.refund_order_num,0),
nvl(1d_ago.refund_order_amount,0.0),
nvl(old.refund_order_last_7d_count,0)+nvl(1d_ago.refund_order_count,0)- nvl(7d_ago.refund_order_count,0),
nvl(old.refund_order_last_7d_num,0)+nvl(1d_ago.refund_order_num, 0)- nvl(7d_ago.refund_order_num,0),
nvl(old.refund_order_last_7d_amount,0.0)+ nvl(1d_ago.refund_order_amount,0.0)- nvl(7d_ago.refund_order_amount,0.0),
nvl(old.refund_order_last_30d_count,0)+nvl(1d_ago.refund_order_count,0)- nvl(30d_ago.refund_order_count,0),
nvl(old.refund_order_last_30d_num,0)+nvl(1d_ago.refund_order_num, 0)- nvl(30d_ago.refund_order_num,0),
nvl(old.refund_order_last_30d_amount,0.0)+ nvl(1d_ago.refund_order_amount,0.0)- nvl(30d_ago.refund_order_amount,0.0),
nvl(old.refund_order_count,0)+nvl(1d_ago.refund_order_count,0),
nvl(old.refund_order_num,0)+nvl(1d_ago.refund_order_num,0),
nvl(old.refund_order_amount,0.0)+ nvl(1d_ago.refund_order_amount,0.0),
nvl(1d_ago.refund_payment_count,0),
nvl(1d_ago.refund_payment_num,0),
nvl(1d_ago.refund_payment_amount,0.0),
nvl(old.refund_payment_last_7d_count,0)+nvl(1d_ago.refund_payment_count,0)-nvl(7d_ago.refund_payment_count,0),
nvl(old.refund_payment_last_7d_num,0)+nvl(1d_ago.refund_payment_num,0)- nvl(7d_ago.refund_payment_num,0),
nvl(old.refund_payment_last_7d_amount,0.0)+ nvl(1d_ago.refund_payment_amount,0.0)- nvl(7d_ago.refund_payment_amount,0.0),
nvl(old.refund_payment_last_30d_count,0)+nvl(1d_ago.refund_payment_count,0)-nvl(30d_ago.refund_payment_count,0),
nvl(old.refund_payment_last_30d_num,0)+nvl(1d_ago.refund_payment_num,0)- nvl(30d_ago.refund_payment_num,0),
nvl(old.refund_payment_last_30d_amount,0.0)+ nvl(1d_ago.refund_payment_amount,0.0)- nvl(30d_ago.refund_payment_amount,0.0),
nvl(old.refund_payment_count,0)+nvl(1d_ago.refund_payment_count,0),
nvl(old.refund_payment_num,0)+nvl(1d_ago.refund_payment_num,0),
nvl(old.refund_payment_amount,0.0)+nvl(1d_ago.refund_payment_amount,0.0),
nvl(1d_ago.cart_count,0),
nvl(old.cart_last_7d_count,0)+nvl(1d_ago.cart_count,0)-nvl(7d_ago.cart_count,0),
nvl(old.cart_last_30d_count,0)+nvl(1d_ago.cart_count,0)-nvl(30d_ago.cart_count,0),
nvl(old.cart_count,0)+nvl(1d_ago.cart_count,0),
nvl(1d_ago.favor_count,0),
nvl(old.favor_last_7d_count,0)+nvl(1d_ago.favor_count,0)- nvl(7d_ago.favor_count,0),
nvl(old.favor_last_30d_count,0)+nvl(1d_ago.favor_count,0)- nvl(30d_ago.favor_count,0),
nvl(old.favor_count,0)+nvl(1d_ago.favor_count,0),
nvl(1d_ago.coupon_get_count,0),
nvl(1d_ago.coupon_using_count,0),
nvl(1d_ago.coupon_used_count,0),
nvl(old.coupon_last_7d_get_count,0)+nvl(1d_ago.coupon_get_count,0)- nvl(7d_ago.coupon_get_count,0),
nvl(old.coupon_last_7d_using_count,0)+nvl(1d_ago.coupon_using_count,0)- nvl(7d_ago.coupon_using_count,0),
nvl(old.coupon_last_7d_used_count,0)+ nvl(1d_ago.coupon_used_count,0)- nvl(7d_ago.coupon_used_count,0),
nvl(old.coupon_last_30d_get_count,0)+nvl(1d_ago.coupon_get_count,0)- nvl(30d_ago.coupon_get_count,0),
nvl(old.coupon_last_30d_using_count,0)+nvl(1d_ago.coupon_using_count,0)- nvl(30d_ago.coupon_using_count,0),
nvl(old.coupon_last_30d_used_count,0)+ nvl(1d_ago.coupon_used_count,0)- nvl(30d_ago.coupon_used_count,0),
nvl(old.coupon_get_count,0)+nvl(1d_ago.coupon_get_count,0),
nvl(old.coupon_using_count,0)+nvl(1d_ago.coupon_using_count,0),
nvl(old.coupon_used_count,0)+nvl(1d_ago.coupon_used_count,0),
nvl(1d_ago.appraise_good_count,0),
nvl(1d_ago.appraise_mid_count,0),
nvl(1d_ago.appraise_bad_count,0),
nvl(old.appraise_last_7d_default_count,0)+nvl(1d_ago.appraise_default_count,0)-nvl(7d_ago.appraise_default_count,0),
nvl(old.appraise_last_7d_good_count,0)+nvl(1d_ago.appraise_good_count,0)- nvl(7d_ago.appraise_good_count,0),
nvl(old.appraise_last_7d_mid_count,0)+nvl(1d_ago.appraise_mid_count,0)-nvl(7d_ago.appraise_mid_count,0),
nvl(old.appraise_last_7d_bad_count,0)+nvl(1d_ago.appraise_bad_count,0)-nvl(7d_ago.appraise_bad_count,0),
nvl(old.appraise_last_7d_default_count,0)+nvl(1d_ago.appraise_default_count,0)-nvl(7d_ago.appraise_default_count,0),
nvl(old.appraise_last_30d_good_count,0)+nvl(1d_ago.appraise_good_count,0)- nvl(30d_ago.appraise_good_count,0),
nvl(old.appraise_last_30d_mid_count,0)+nvl(1d_ago.appraise_mid_count,0)-nvl(30d_ago.appraise_mid_count,0),
nvl(old.appraise_last_30d_bad_count,0)+nvl(1d_ago.appraise_bad_count,0)-nvl(30d_ago.appraise_bad_count,0),
nvl(old.appraise_last_30d_default_count,0)+nvl(1d_ago.appraise_default_count,0)-nvl(30d_ago.appraise_default_count,0),
nvl(old.appraise_good_count,0)+nvl(1d_ago.appraise_good_count,0),
nvl(old.appraise_mid_count,0)+nvl(1d_ago.appraise_mid_count, 0),
nvl(old.appraise_bad_count,0)+nvl(1d_ago.appraise_bad_count,0),
nvl(old.appraise_default_count,0)+nvl(1d_ago.appraise_default_count,0)
from
(
select
user_id,
login_date_first,
login_date_last,
login_date_1d_count,
login_last_1d_day_count,
login_last_7d_count,
login_last_7d_day_count,
login_last_30d_count,
login_last_30d_day_count,
login_count,
login_day_count,
order_date_first,
order_date_last,
order_last_1d_count,
order_activity_last_1d_count,
order_activity_reduce_last_1d_amount,
order_coupon_last_1d_count,
order_coupon_reduce_last_1d_amount,
order_last_1d_original_amount,
order_last_1d_final_amount,
order_last_7d_count,
order_activity_last_7d_count,
order_activity_reduce_last_7d_amount,
order_coupon_last_7d_count,
order_coupon_reduce_last_7d_amount,
order_last_7d_original_amount,
order_last_7d_final_amount,
order_last_30d_count,
order_activity_last_30d_count,
order_activity_reduce_last_30d_amount,
order_coupon_last_30d_count,
order_coupon_reduce_last_30d_amount,
order_last_30d_original_amount,
order_last_30d_final_amount,
order_count,
order_activity_count,
order_activity_reduce_amount,
order_coupon_count,
order_coupon_reduce_amount,
order_original_amount,
order_final_amount,
payment_date_first,
payment_date_last,
payment_last_1d_count,
payment_last_1d_amount,
payment_last_7d_count,
payment_last_7d_amount,
payment_last_30d_count,
payment_last_30d_amount,
payment_count,
payment_amount,
refund_order_last_1d_count,
refund_order_last_1d_num,
refund_order_last_1d_amount,
refund_order_last_7d_count,
refund_order_last_7d_num,
refund_order_last_7d_amount,
refund_order_last_30d_count,
refund_order_last_30d_num,
refund_order_last_30d_amount,
refund_order_count,
refund_order_num,
refund_order_amount,
refund_payment_last_1d_count,
refund_payment_last_1d_num,
refund_payment_last_1d_amount,
refund_payment_last_7d_count,
refund_payment_last_7d_num,
refund_payment_last_7d_amount,
refund_payment_last_30d_count,
refund_payment_last_30d_num,
refund_payment_last_30d_amount,
refund_payment_count,
refund_payment_num,
refund_payment_amount,
cart_last_1d_count,
cart_last_7d_count,
cart_last_30d_count,
cart_count,
favor_last_1d_count,
favor_last_7d_count,
favor_last_30d_count,
favor_count,
coupon_last_1d_get_count,
coupon_last_1d_using_count,
coupon_last_1d_used_count,
coupon_last_7d_get_count,
coupon_last_7d_using_count,
coupon_last_7d_used_count,
coupon_last_30d_get_count,
coupon_last_30d_using_count,
coupon_last_30d_used_count,
coupon_get_count,
coupon_using_count,
coupon_used_count,
appraise_last_1d_good_count,
appraise_last_1d_mid_count,
appraise_last_1d_bad_count,
appraise_last_1d_default_count,
appraise_last_7d_good_count,
appraise_last_7d_mid_count,
appraise_last_7d_bad_count,
appraise_last_7d_default_count,
appraise_last_30d_good_count,
appraise_last_30d_mid_count,
appraise_last_30d_bad_count,
appraise_last_30d_default_count,
appraise_good_count,
appraise_mid_count,
appraise_bad_count,
appraise_default_count
from ${APP}.dwt_user_topic
where dt=date_add('$do_date',-1)
)old
full outer join
(
select
user_id,
login_count,
cart_count,
favor_count,
order_count,
order_activity_count,
order_activity_reduce_amount,
order_coupon_count,
order_coupon_reduce_amount,
order_original_amount,
order_final_amount,
payment_count,
payment_amount,
refund_order_count,
refund_order_num,
refund_order_amount,
refund_payment_count,
refund_payment_num,
refund_payment_amount,
coupon_get_count,
coupon_using_count,
coupon_used_count,
appraise_good_count,
appraise_mid_count,
appraise_bad_count,
appraise_default_count
from ${APP}.dws_user_action_daycount
where dt='$do_date'
)1d_ago
on old.user_id=1d_ago.user_id
left join
(
select
user_id,
login_count,
cart_count,
favor_count,
order_count,
order_activity_count,
order_activity_reduce_amount,
order_coupon_count,
order_coupon_reduce_amount,
order_original_amount,
order_final_amount,
payment_count,
payment_amount,
refund_order_count,
refund_order_num,
refund_order_amount,
refund_payment_count,
refund_payment_num,
refund_payment_amount,
coupon_get_count,
coupon_using_count,
coupon_used_count,
appraise_good_count,
appraise_mid_count,
appraise_bad_count,
appraise_default_count
from ${APP}.dws_user_action_daycount
where dt=date_add('$do_date',-7)
)7d_ago
on old.user_id=7d_ago.user_id
left join
(
select
user_id,
login_count,
cart_count,
favor_count,
order_count,
order_activity_count,
order_activity_reduce_amount,
order_coupon_count,
order_coupon_reduce_amount,
order_original_amount,
order_final_amount,
payment_count,
payment_amount,
refund_order_count,
refund_order_num,
refund_order_amount,
refund_payment_count,
refund_payment_num,
refund_payment_amount,
coupon_get_count,
coupon_using_count,
coupon_used_count,
appraise_good_count,
appraise_mid_count,
appraise_bad_count,
appraise_default_count
from ${APP}.dws_user_action_daycount
where dt=date_add('$do_date',-30)
)30d_ago
on old.user_id=30d_ago.user_id;
alter table ${APP}.dwt_user_topic drop partition(dt='$clear_date');
"
dwt_sku_topic="
insert overwrite table ${APP}.dwt_sku_topic partition(dt='$do_date')
select
nvl(1d_ago.sku_id,old.sku_id),
nvl(1d_ago.order_count,0),
nvl(1d_ago.order_num,0),
nvl(1d_ago.order_activity_count,0),
nvl(1d_ago.order_coupon_count,0),
nvl(1d_ago.order_activity_reduce_amount,0.0),
nvl(1d_ago.order_coupon_reduce_amount,0.0),
nvl(1d_ago.order_original_amount,0.0),
nvl(1d_ago.order_final_amount,0.0),
nvl(old.order_last_7d_count,0)+nvl(1d_ago.order_count,0)- nvl(7d_ago.order_count,0),
nvl(old.order_last_7d_num,0)+nvl(1d_ago.order_num,0)- nvl(7d_ago.order_num,0),
nvl(old.order_activity_last_7d_count,0)+nvl(1d_ago.order_activity_count,0)- nvl(7d_ago.order_activity_count,0),
nvl(old.order_coupon_last_7d_count,0)+nvl(1d_ago.order_coupon_count,0)- nvl(7d_ago.order_coupon_count,0),
nvl(old.order_activity_reduce_last_7d_amount,0.0)+nvl(1d_ago.order_activity_reduce_amount,0.0)- nvl(7d_ago.order_activity_reduce_amount,0.0),
nvl(old.order_coupon_reduce_last_7d_amount,0.0)+nvl(1d_ago.order_coupon_reduce_amount,0.0)- nvl(7d_ago.order_coupon_reduce_amount,0.0),
nvl(old.order_last_7d_original_amount,0.0)+nvl(1d_ago.order_original_amount,0.0)- nvl(7d_ago.order_original_amount,0.0),
nvl(old.order_last_7d_final_amount,0.0)+nvl(1d_ago.order_final_amount,0.0)- nvl(7d_ago.order_final_amount,0.0),
nvl(old.order_last_30d_count,0)+nvl(1d_ago.order_count,0)- nvl(30d_ago.order_count,0),
nvl(old.order_last_30d_num,0)+nvl(1d_ago.order_num,0)- nvl(30d_ago.order_num,0),
nvl(old.order_activity_last_30d_count,0)+nvl(1d_ago.order_activity_count,0)- nvl(30d_ago.order_activity_count,0),
nvl(old.order_coupon_last_30d_count,0)+nvl(1d_ago.order_coupon_count,0)- nvl(30d_ago.order_coupon_count,0),
nvl(old.order_activity_reduce_last_30d_amount,0.0)+nvl(1d_ago.order_activity_reduce_amount,0.0)- nvl(30d_ago.order_activity_reduce_amount,0.0),
nvl(old.order_coupon_reduce_last_30d_amount,0.0)+nvl(1d_ago.order_coupon_reduce_amount,0.0)- nvl(30d_ago.order_coupon_reduce_amount,0.0),
nvl(old.order_last_30d_original_amount,0.0)+nvl(1d_ago.order_original_amount,0.0)- nvl(30d_ago.order_original_amount,0.0),
nvl(old.order_last_30d_final_amount,0.0)+nvl(1d_ago.order_final_amount,0.0)- nvl(30d_ago.order_final_amount,0.0),
nvl(old.order_count,0)+nvl(1d_ago.order_count,0),
nvl(old.order_num,0)+nvl(1d_ago.order_num,0),
nvl(old.order_activity_count,0)+nvl(1d_ago.order_activity_count,0),
nvl(old.order_coupon_count,0)+nvl(1d_ago.order_coupon_count,0),
nvl(old.order_activity_reduce_amount,0.0)+nvl(1d_ago.order_activity_reduce_amount,0.0),
nvl(old.order_coupon_reduce_amount,0.0)+nvl(1d_ago.order_coupon_reduce_amount,0.0),
nvl(old.order_original_amount,0.0)+nvl(1d_ago.order_original_amount,0.0),
nvl(old.order_final_amount,0.0)+nvl(1d_ago.order_final_amount,0.0),
nvl(1d_ago.payment_count,0),
nvl(1d_ago.payment_num,0),
nvl(1d_ago.payment_amount,0.0),
nvl(old.payment_last_7d_count,0)+nvl(1d_ago.payment_count,0)- nvl(7d_ago.payment_count,0),
nvl(old.payment_last_7d_num,0)+nvl(1d_ago.payment_num,0)- nvl(7d_ago.payment_num,0),
nvl(old.payment_last_7d_amount,0.0)+nvl(1d_ago.payment_amount,0.0)- nvl(7d_ago.payment_amount,0.0),
nvl(old.payment_last_30d_count,0)+nvl(1d_ago.payment_count,0)- nvl(30d_ago.payment_count,0),
nvl(old.payment_last_30d_num,0)+nvl(1d_ago.payment_num,0)- nvl(30d_ago.payment_num,0),
nvl(old.payment_last_30d_amount,0.0)+nvl(1d_ago.payment_amount,0.0)- nvl(30d_ago.payment_amount,0.0),
nvl(old.payment_count,0)+nvl(1d_ago.payment_count,0),
nvl(old.payment_num,0)+nvl(1d_ago.payment_num,0),
nvl(old.payment_amount,0.0)+nvl(1d_ago.payment_amount,0.0),
nvl(old.refund_order_last_1d_count,0)+nvl(1d_ago.refund_order_count,0)- nvl(1d_ago.refund_order_count,0),
nvl(old.refund_order_last_1d_num,0)+nvl(1d_ago.refund_order_num,0)- nvl(1d_ago.refund_order_num,0),
nvl(old.refund_order_last_1d_amount,0.0)+nvl(1d_ago.refund_order_amount,0.0)- nvl(1d_ago.refund_order_amount,0.0),
nvl(old.refund_order_last_7d_count,0)+nvl(1d_ago.refund_order_count,0)- nvl(7d_ago.refund_order_count,0),
nvl(old.refund_order_last_7d_num,0)+nvl(1d_ago.refund_order_num,0)- nvl(7d_ago.refund_order_num,0),
nvl(old.refund_order_last_7d_amount,0.0)+nvl(1d_ago.refund_order_amount,0.0)- nvl(7d_ago.refund_order_amount,0.0),
nvl(old.refund_order_last_30d_count,0)+nvl(1d_ago.refund_order_count,0)- nvl(30d_ago.refund_order_count,0),
nvl(old.refund_order_last_30d_num,0)+nvl(1d_ago.refund_order_num,0)- nvl(30d_ago.refund_order_num,0),
nvl(old.refund_order_last_30d_amount,0.0)+nvl(1d_ago.refund_order_amount,0.0)- nvl(30d_ago.refund_order_amount,0.0),
nvl(old.refund_order_count,0)+nvl(1d_ago.refund_order_count,0),
nvl(old.refund_order_num,0)+nvl(1d_ago.refund_order_num,0),
nvl(old.refund_order_amount,0.0)+nvl(1d_ago.refund_order_amount,0.0),
nvl(1d_ago.refund_payment_count,0),
nvl(1d_ago.refund_payment_num,0),
nvl(1d_ago.refund_payment_amount,0.0),
nvl(old.refund_payment_last_7d_count,0)+nvl(1d_ago.refund_payment_count,0)- nvl(7d_ago.refund_payment_count,0),
nvl(old.refund_payment_last_7d_num,0)+nvl(1d_ago.refund_payment_num,0)- nvl(7d_ago.refund_payment_num,0),
nvl(old.refund_payment_last_7d_amount,0.0)+nvl(1d_ago.refund_payment_amount,0.0)- nvl(7d_ago.refund_payment_amount,0.0),
nvl(old.refund_payment_last_30d_count,0)+nvl(1d_ago.refund_payment_count,0)- nvl(30d_ago.refund_payment_count,0),
nvl(old.refund_payment_last_30d_num,0)+nvl(1d_ago.refund_payment_num,0)- nvl(30d_ago.refund_payment_num,0),
nvl(old.refund_payment_last_30d_amount,0.0)+nvl(1d_ago.refund_payment_amount,0.0)- nvl(30d_ago.refund_payment_amount,0.0),
nvl(old.refund_payment_count,0)+nvl(1d_ago.refund_payment_count,0),
nvl(old.refund_payment_num,0)+nvl(1d_ago.refund_payment_num,0),
nvl(old.refund_payment_amount,0.0)+nvl(1d_ago.refund_payment_amount,0.0),
nvl(1d_ago.cart_count,0),
nvl(old.cart_last_7d_count,0)+nvl(1d_ago.cart_count,0)- nvl(7d_ago.cart_count,0),
nvl(old.cart_last_30d_count,0)+nvl(1d_ago.cart_count,0)- nvl(30d_ago.cart_count,0),
nvl(old.cart_count,0)+nvl(1d_ago.cart_count,0),
nvl(1d_ago.favor_count,0),
nvl(old.favor_last_7d_count,0)+nvl(1d_ago.favor_count,0)- nvl(7d_ago.favor_count,0),
nvl(old.favor_last_30d_count,0)+nvl(1d_ago.favor_count,0)- nvl(30d_ago.favor_count,0),
nvl(old.favor_count,0)+nvl(1d_ago.favor_count,0),
nvl(1d_ago.appraise_good_count,0),
nvl(1d_ago.appraise_mid_count,0),
nvl(1d_ago.appraise_bad_count,0),
nvl(1d_ago.appraise_default_count,0),
nvl(old.appraise_last_7d_good_count,0)+nvl(1d_ago.appraise_good_count,0)- nvl(7d_ago.appraise_good_count,0),
nvl(old.appraise_last_7d_mid_count,0)+nvl(1d_ago.appraise_mid_count,0)- nvl(7d_ago.appraise_mid_count,0),
nvl(old.appraise_last_7d_bad_count,0)+nvl(1d_ago.appraise_bad_count,0)- nvl(7d_ago.appraise_bad_count,0),
nvl(old.appraise_last_7d_default_count,0)+nvl(1d_ago.appraise_default_count,0)- nvl(7d_ago.appraise_default_count,0),
nvl(old.appraise_last_30d_good_count,0)+nvl(1d_ago.appraise_good_count,0)- nvl(30d_ago.appraise_good_count,0),
nvl(old.appraise_last_30d_mid_count,0)+nvl(1d_ago.appraise_mid_count,0)- nvl(30d_ago.appraise_mid_count,0),
nvl(old.appraise_last_30d_bad_count,0)+nvl(1d_ago.appraise_bad_count,0)- nvl(30d_ago.appraise_bad_count,0),
nvl(old.appraise_last_30d_default_count,0)+nvl(1d_ago.appraise_default_count,0)- nvl(30d_ago.appraise_default_count,0),
nvl(old.appraise_good_count,0)+nvl(1d_ago.appraise_good_count,0),
nvl(old.appraise_mid_count,0)+nvl(1d_ago.appraise_mid_count,0),
nvl(old.appraise_bad_count,0)+nvl(1d_ago.appraise_bad_count,0),
nvl(old.appraise_default_count,0)+nvl(1d_ago.appraise_default_count,0)
from
(
select
sku_id,
order_last_1d_count,
order_last_1d_num,
order_activity_last_1d_count,
order_coupon_last_1d_count,
order_activity_reduce_last_1d_amount,
order_coupon_reduce_last_1d_amount,
order_last_1d_original_amount,
order_last_1d_final_amount,
order_last_7d_count,
order_last_7d_num,
order_activity_last_7d_count,
order_coupon_last_7d_count,
order_activity_reduce_last_7d_amount,
order_coupon_reduce_last_7d_amount,
order_last_7d_original_amount,
order_last_7d_final_amount,
order_last_30d_count,
order_last_30d_num,
order_activity_last_30d_count,
order_coupon_last_30d_count,
order_activity_reduce_last_30d_amount,
order_coupon_reduce_last_30d_amount,
order_last_30d_original_amount,
order_last_30d_final_amount,
order_count,
order_num,
order_activity_count,
order_coupon_count,
order_activity_reduce_amount,
order_coupon_reduce_amount,
order_original_amount,
order_final_amount,
payment_last_1d_count,
payment_last_1d_num,
payment_last_1d_amount,
payment_last_7d_count,
payment_last_7d_num,
payment_last_7d_amount,
payment_last_30d_count,
payment_last_30d_num,
payment_last_30d_amount,
payment_count,
payment_num,
payment_amount,
refund_order_last_1d_count,
refund_order_last_1d_num,
refund_order_last_1d_amount,
refund_order_last_7d_count,
refund_order_last_7d_num,
refund_order_last_7d_amount,
refund_order_last_30d_count,
refund_order_last_30d_num,
refund_order_last_30d_amount,
refund_order_count,
refund_order_num,
refund_order_amount,
refund_payment_last_1d_count,
refund_payment_last_1d_num,
refund_payment_last_1d_amount,
refund_payment_last_7d_count,
refund_payment_last_7d_num,
refund_payment_last_7d_amount,
refund_payment_last_30d_count,
refund_payment_last_30d_num,
refund_payment_last_30d_amount,
refund_payment_count,
refund_payment_num,
refund_payment_amount,
cart_last_1d_count,
cart_last_7d_count,
cart_last_30d_count,
cart_count,
favor_last_1d_count,
favor_last_7d_count,
favor_last_30d_count,
favor_count,
appraise_last_1d_good_count,
appraise_last_1d_mid_count,
appraise_last_1d_bad_count,
appraise_last_1d_default_count,
appraise_last_7d_good_count,
appraise_last_7d_mid_count,
appraise_last_7d_bad_count,
appraise_last_7d_default_count,
appraise_last_30d_good_count,
appraise_last_30d_mid_count,
appraise_last_30d_bad_count,
appraise_last_30d_default_count,
appraise_good_count,
appraise_mid_count,
appraise_bad_count,
appraise_default_count
from ${APP}.dwt_sku_topic
where dt=date_add('$do_date',-1)
)old
full outer join
(
select
sku_id,
order_count,
order_num,
order_activity_count,
order_coupon_count,
order_activity_reduce_amount,
order_coupon_reduce_amount,
order_original_amount,
order_final_amount,
payment_count,
payment_num,
payment_amount,
refund_order_count,
refund_order_num,
refund_order_amount,
refund_payment_count,
refund_payment_num,
refund_payment_amount,
cart_count,
favor_count,
appraise_good_count,
appraise_mid_count,
appraise_bad_count,
appraise_default_count
from ${APP}.dws_sku_action_daycount
where dt='$do_date'
)1d_ago
on old.sku_id=1d_ago.sku_id
left join
(
select
sku_id,
order_count,
order_num,
order_activity_count,
order_coupon_count,
order_activity_reduce_amount,
order_coupon_reduce_amount,
order_original_amount,
order_final_amount,
payment_count,
payment_num,
payment_amount,
refund_order_count,
refund_order_num,
refund_order_amount,
refund_payment_count,
refund_payment_num,
refund_payment_amount,
cart_count,
favor_count,
appraise_good_count,
appraise_mid_count,
appraise_bad_count,
appraise_default_count
from ${APP}.dws_sku_action_daycount
where dt=date_add('$do_date',-7)
)7d_ago
on old.sku_id=7d_ago.sku_id
left join
(
select
sku_id,
order_count,
order_num,
order_activity_count,
order_coupon_count,
order_activity_reduce_amount,
order_coupon_reduce_amount,
order_original_amount,
order_final_amount,
payment_count,
payment_num,
payment_amount,
refund_order_count,
refund_order_num,
refund_order_amount,
refund_payment_count,
refund_payment_num,
refund_payment_amount,
cart_count,
favor_count,
appraise_good_count,
appraise_mid_count,
appraise_bad_count,
appraise_default_count
from ${APP}.dws_sku_action_daycount
where dt=date_add('$do_date',-30)
)30d_ago
on old.sku_id=30d_ago.sku_id;
alter table ${APP}.dwt_sku_topic drop partition(dt='$clear_date');
"
dwt_activity_topic="
insert overwrite table ${APP}.dwt_activity_topic partition(dt='$do_date')
select
nvl(1d_ago.activity_rule_id,old.activity_rule_id),
nvl(1d_ago.activity_id,old.activity_id),
nvl(1d_ago.order_count,0),
nvl(1d_ago.order_reduce_amount,0.0),
nvl(1d_ago.order_original_amount,0.0),
nvl(1d_ago.order_final_amount,0.0),
nvl(old.order_count,0)+nvl(1d_ago.order_count,0),
nvl(old.order_reduce_amount,0.0)+nvl(1d_ago.order_reduce_amount,0.0),
nvl(old.order_original_amount,0.0)+nvl(1d_ago.order_original_amount,0.0),
nvl(old.order_final_amount,0.0)+nvl(1d_ago.order_final_amount,0.0),
nvl(1d_ago.payment_count,0),
nvl(1d_ago.payment_reduce_amount,0.0),
nvl(1d_ago.payment_amount,0.0),
nvl(old.payment_count,0)+nvl(1d_ago.payment_count,0),
nvl(old.payment_reduce_amount,0.0)+nvl(1d_ago.payment_reduce_amount,0.0),
nvl(old.payment_amount,0.0)+nvl(1d_ago.payment_amount,0.0)
from
(
select
activity_rule_id,
activity_id,
order_count,
order_reduce_amount,
order_original_amount,
order_final_amount,
payment_count,
payment_reduce_amount,
payment_amount
from ${APP}.dwt_activity_topic
where dt=date_add('$do_date',-1)
)old
full outer join
(
select
activity_rule_id,
activity_id,
order_count,
order_reduce_amount,
order_original_amount,
order_final_amount,
payment_count,
payment_reduce_amount,
payment_amount
from ${APP}.dws_activity_info_daycount
where dt='$do_date'
)1d_ago
on old.activity_rule_id=1d_ago.activity_rule_id;
alter table ${APP}.dwt_activity_topic drop partition(dt='$clear_date');
"
dwt_coupon_topic="
insert overwrite table ${APP}.dwt_coupon_topic partition(dt='$do_date')
select
nvl(1d_ago.coupon_id,old.coupon_id),
nvl(1d_ago.get_count,0),
nvl(old.get_last_7d_count,0)+nvl(1d_ago.get_count,0)- nvl(7d_ago.get_count,0),
nvl(old.get_last_30d_count,0)+nvl(1d_ago.get_count,0)- nvl(30d_ago.get_count,0),
nvl(old.get_count,0)+nvl(1d_ago.get_count,0),
nvl(1d_ago.order_count,0),
nvl(1d_ago.order_reduce_amount,0.0),
nvl(1d_ago.order_original_amount,0.0),
nvl(1d_ago.order_final_amount,0.0),
nvl(old.order_last_7d_count,0)+nvl(1d_ago.order_count,0)- nvl(7d_ago.order_count,0),
nvl(old.order_last_7d_reduce_amount,0.0)+nvl(1d_ago.order_reduce_amount,0.0)- nvl(7d_ago.order_reduce_amount,0.0),
nvl(old.order_last_7d_original_amount,0.0)+nvl(1d_ago.order_original_amount,0.0)- nvl(7d_ago.order_original_amount,0.0),
nvl(old.order_last_7d_final_amount,0.0)+nvl(1d_ago.order_final_amount,0.0)- nvl(7d_ago.order_final_amount,0.0),
nvl(old.order_last_30d_count,0)+nvl(1d_ago.order_count,0)- nvl(30d_ago.order_count,0),
nvl(old.order_last_30d_reduce_amount,0.0)+nvl(1d_ago.order_reduce_amount,0.0)- nvl(30d_ago.order_reduce_amount,0.0),
nvl(old.order_last_30d_original_amount,0.0)+nvl(1d_ago.order_original_amount,0.0)- nvl(30d_ago.order_original_amount,0.0),
nvl(old.order_last_30d_final_amount,0.0)+nvl(1d_ago.order_final_amount,0.0)- nvl(30d_ago.order_final_amount,0.0),
nvl(old.order_count,0)+nvl(1d_ago.order_count,0),
nvl(old.order_reduce_amount,0.0)+nvl(1d_ago.order_reduce_amount,0.0),
nvl(old.order_original_amount,0.0)+nvl(1d_ago.order_original_amount,0.0),
nvl(old.order_final_amount,0.0)+nvl(1d_ago.order_final_amount,0.0),
nvl(old.payment_last_1d_count,0)+nvl(1d_ago.payment_count,0)- nvl(1d_ago.payment_count,0),
nvl(old.payment_last_1d_reduce_amount,0.0)+nvl(1d_ago.payment_reduce_amount,0.0)- nvl(1d_ago.payment_reduce_amount,0.0),
nvl(old.payment_last_1d_amount,0.0)+nvl(1d_ago.payment_amount,0.0)- nvl(1d_ago.payment_amount,0.0),
nvl(old.payment_last_7d_count,0)+nvl(1d_ago.payment_count,0)- nvl(7d_ago.payment_count,0),
nvl(old.payment_last_7d_reduce_amount,0.0)+nvl(1d_ago.payment_reduce_amount,0.0)- nvl(7d_ago.payment_reduce_amount,0.0),
nvl(old.payment_last_7d_amount,0.0)+nvl(1d_ago.payment_amount,0.0)- nvl(7d_ago.payment_amount,0.0),
nvl(old.payment_last_30d_count,0)+nvl(1d_ago.payment_count,0)- nvl(30d_ago.payment_count,0),
nvl(old.payment_last_30d_reduce_amount,0.0)+nvl(1d_ago.payment_reduce_amount,0.0)- nvl(30d_ago.payment_reduce_amount,0.0),
nvl(old.payment_last_30d_amount,0.0)+nvl(1d_ago.payment_amount,0.0)- nvl(30d_ago.payment_amount,0.0),
nvl(old.payment_count,0)+nvl(1d_ago.payment_count,0),
nvl(old.payment_reduce_amount,0.0)+nvl(1d_ago.payment_reduce_amount,0.0),
nvl(old.payment_amount,0.0)+nvl(1d_ago.payment_amount,0.0),
nvl(1d_ago.expire_count,0),
nvl(old.expire_last_7d_count,0)+nvl(1d_ago.expire_count,0)- nvl(7d_ago.expire_count,0),
nvl(old.expire_last_30d_count,0)+nvl(1d_ago.expire_count,0)- nvl(30d_ago.expire_count,0),
nvl(old.expire_count,0)+nvl(1d_ago.expire_count,0)
from
(
select
coupon_id,
get_last_1d_count,
get_last_7d_count,
get_last_30d_count,
get_count,
order_last_1d_count,
order_last_1d_reduce_amount,
order_last_1d_original_amount,
order_last_1d_final_amount,
order_last_7d_count,
order_last_7d_reduce_amount,
order_last_7d_original_amount,
order_last_7d_final_amount,
order_last_30d_count,
order_last_30d_reduce_amount,
order_last_30d_original_amount,
order_last_30d_final_amount,
order_count,
order_reduce_amount,
order_original_amount,
order_final_amount,
payment_last_1d_count,
payment_last_1d_reduce_amount,
payment_last_1d_amount,
payment_last_7d_count,
payment_last_7d_reduce_amount,
payment_last_7d_amount,
payment_last_30d_count,
payment_last_30d_reduce_amount,
payment_last_30d_amount,
payment_count,
payment_reduce_amount,
payment_amount,
expire_last_1d_count,
expire_last_7d_count,
expire_last_30d_count,
expire_count
from ${APP}.dwt_coupon_topic
where dt=date_add('$do_date',-1)
)old
full outer join
(
select
coupon_id,
get_count,
order_count,
order_reduce_amount,
order_original_amount,
order_final_amount,
payment_count,
payment_reduce_amount,
payment_amount,
expire_count
from ${APP}.dws_coupon_info_daycount
where dt='$do_date'
)1d_ago
on old.coupon_id=1d_ago.coupon_id
left join
(
select
coupon_id,
get_count,
order_count,
order_reduce_amount,
order_original_amount,
order_final_amount,
payment_count,
payment_reduce_amount,
payment_amount,
expire_count
from ${APP}.dws_coupon_info_daycount
where dt=date_add('$do_date',-7)
)7d_ago
on old.coupon_id=7d_ago.coupon_id
left join
(
select
coupon_id,
get_count,
order_count,
order_reduce_amount,
order_original_amount,
order_final_amount,
payment_count,
payment_reduce_amount,
payment_amount,
expire_count
from ${APP}.dws_coupon_info_daycount
where dt=date_add('$do_date',-30)
)30d_ago
on old.coupon_id=30d_ago.coupon_id;
alter table ${APP}.dwt_coupon_topic drop partition(dt='$clear_date');
"
dwt_area_topic="
insert overwrite table ${APP}.dwt_area_topic partition(dt='$do_date')
select
nvl(old.province_id, 1d_ago.province_id),
nvl(1d_ago.visit_count,0),
nvl(1d_ago.login_count,0),
nvl(old.visit_last_7d_count,0)+nvl(1d_ago.visit_count,0)- nvl(7d_ago.visit_count,0),
nvl(old.login_last_7d_count,0)+nvl(1d_ago.login_count,0)- nvl(7d_ago.login_count,0),
nvl(old.visit_last_30d_count,0)+nvl(1d_ago.visit_count,0)- nvl(30d_ago.visit_count,0),
nvl(old.login_last_30d_count,0)+nvl(1d_ago.login_count,0)- nvl(30d_ago.login_count,0),
nvl(old.visit_count,0)+nvl(1d_ago.visit_count,0),
nvl(old.login_count,0)+nvl(1d_ago.login_count,0),
nvl(1d_ago.order_count,0),
nvl(1d_ago.order_original_amount,0.0),
nvl(1d_ago.order_final_amount,0.0),
nvl(old.order_last_7d_count,0)+nvl(1d_ago.order_count,0)- nvl(7d_ago.order_count,0),
nvl(old.order_last_7d_original_amount,0.0)+nvl(1d_ago.order_original_amount,0.0)- nvl(7d_ago.order_original_amount,0.0),
nvl(old.order_last_7d_final_amount,0.0)+nvl(1d_ago.order_final_amount,0.0)- nvl(7d_ago.order_final_amount,0.0),
nvl(old.order_last_30d_count,0)+nvl(1d_ago.order_count,0)- nvl(30d_ago.order_count,0),
nvl(old.order_last_30d_original_amount,0.0)+nvl(1d_ago.order_original_amount,0.0)- nvl(30d_ago.order_original_amount,0.0),
nvl(old.order_last_30d_final_amount,0.0)+nvl(1d_ago.order_final_amount,0.0)- nvl(30d_ago.order_final_amount,0.0),
nvl(old.order_count,0)+nvl(1d_ago.order_count,0),
nvl(old.order_original_amount,0.0)+nvl(1d_ago.order_original_amount,0.0),
nvl(old.order_final_amount,0.0)+nvl(1d_ago.order_final_amount,0.0),
nvl(1d_ago.payment_count,0),
nvl(1d_ago.payment_amount,0.0),
nvl(old.payment_last_7d_count,0)+nvl(1d_ago.payment_count,0)- nvl(7d_ago.payment_count,0),
nvl(old.payment_last_7d_amount,0.0)+nvl(1d_ago.payment_amount,0.0)- nvl(7d_ago.payment_amount,0.0),
nvl(old.payment_last_30d_count,0)+nvl(1d_ago.payment_count,0)- nvl(30d_ago.payment_count,0),
nvl(old.payment_last_30d_amount,0.0)+nvl(1d_ago.payment_amount,0.0)- nvl(30d_ago.payment_amount,0.0),
nvl(old.payment_count,0)+nvl(1d_ago.payment_count,0),
nvl(old.payment_amount,0.0)+nvl(1d_ago.payment_amount,0.0),
nvl(1d_ago.refund_order_count,0),
nvl(1d_ago.refund_order_amount,0.0),
nvl(old.refund_order_last_7d_count,0)+nvl(1d_ago.refund_order_count,0)- nvl(7d_ago.refund_order_count,0),
nvl(old.refund_order_last_7d_amount,0.0)+nvl(1d_ago.refund_order_amount,0.0)- nvl(7d_ago.refund_order_amount,0.0),
nvl(old.refund_order_last_30d_count,0)+nvl(1d_ago.refund_order_count,0)- nvl(30d_ago.refund_order_count,0),
nvl(old.refund_order_last_30d_amount,0.0)+nvl(1d_ago.refund_order_amount,0.0)- nvl(30d_ago.refund_order_amount,0.0),
nvl(old.refund_order_count,0)+nvl(1d_ago.refund_order_count,0),
nvl(old.refund_order_amount,0.0)+nvl(1d_ago.refund_order_amount,0.0),
nvl(1d_ago.refund_payment_count,0),
nvl(1d_ago.refund_payment_amount,0.0),
nvl(old.refund_payment_last_7d_count,0)+nvl(1d_ago.refund_payment_count,0)- nvl(7d_ago.refund_payment_count,0),
nvl(old.refund_payment_last_7d_amount,0.0)+nvl(1d_ago.refund_payment_amount,0.0)- nvl(7d_ago.refund_payment_amount,0.0),
nvl(old.refund_payment_last_30d_count,0)+nvl(1d_ago.refund_payment_count,0)- nvl(30d_ago.refund_payment_count,0),
nvl(old.refund_payment_last_30d_amount,0.0)+nvl(1d_ago.refund_payment_amount,0.0)- nvl(30d_ago.refund_payment_amount,0.0),
nvl(old.refund_payment_count,0)+nvl(1d_ago.refund_payment_count,0),
nvl(old.refund_payment_amount,0.0)+nvl(1d_ago.refund_payment_amount,0.0)
from
(
select
province_id,
visit_last_1d_count,
login_last_1d_count,
visit_last_7d_count,
login_last_7d_count,
visit_last_30d_count,
login_last_30d_count,
visit_count,
login_count,
order_last_1d_count,
order_last_1d_original_amount,
order_last_1d_final_amount,
order_last_7d_count,
order_last_7d_original_amount,
order_last_7d_final_amount,
order_last_30d_count,
order_last_30d_original_amount,
order_last_30d_final_amount,
order_count,
order_original_amount,
order_final_amount,
payment_last_1d_count,
payment_last_1d_amount,
payment_last_7d_count,
payment_last_7d_amount,
payment_last_30d_count,
payment_last_30d_amount,
payment_count,
payment_amount,
refund_order_last_1d_count,
refund_order_last_1d_amount,
refund_order_last_7d_count,
refund_order_last_7d_amount,
refund_order_last_30d_count,
refund_order_last_30d_amount,
refund_order_count,
refund_order_amount,
refund_payment_last_1d_count,
refund_payment_last_1d_amount,
refund_payment_last_7d_count,
refund_payment_last_7d_amount,
refund_payment_last_30d_count,
refund_payment_last_30d_amount,
refund_payment_count,
refund_payment_amount
from ${APP}.dwt_area_topic
where dt=date_add('$do_date',-1)
)old
full outer join
(
select
province_id,
visit_count,
login_count,
order_count,
order_original_amount,
order_final_amount,
payment_count,
payment_amount,
refund_order_count,
refund_order_amount,
refund_payment_count,
refund_payment_amount
from ${APP}.dws_area_stats_daycount
where dt='$do_date'
)1d_ago
on old.province_id=1d_ago.province_id
left join
(
select
province_id,
visit_count,
login_count,
order_count,
order_original_amount,
order_final_amount,
payment_count,
payment_amount,
refund_order_count,
refund_order_amount,
refund_payment_count,
refund_payment_amount
from ${APP}.dws_area_stats_daycount
where dt=date_add('$do_date',-7)
)7d_ago
on old.province_id= 7d_ago.province_id
left join
(
select
province_id,
visit_count,
login_count,
order_count,
order_original_amount,
order_final_amount,
payment_count,
payment_amount,
refund_order_count,
refund_order_amount,
refund_payment_count,
refund_payment_amount
from ${APP}.dws_area_stats_daycount
where dt=date_add('$do_date',-30)
)30d_ago
on old.province_id= 30d_ago.province_id;
alter table ${APP}.dwt_area_topic drop partition(dt='$clear_date');
"
case $1 in
"dwt_visitor_topic" )
hive -e "$dwt_visitor_topic"
hadoop fs -rm -r -f /warehouse/gmall/dwt/dwt_visitor_topic/dt=$clear_date
;;
"dwt_user_topic" )
hive -e "$dwt_user_topic"
hadoop fs -rm -r -f /warehouse/gmall/dwt/dwt_user_topic/dt=$clear_date
;;
"dwt_sku_topic" )
hive -e "$dwt_sku_topic"
hadoop fs -rm -r -f /warehouse/gmall/dwt/dwt_sku_topic/dt=$clear_date
;;
"dwt_activity_topic" )
hive -e "$dwt_activity_topic"
hadoop fs -rm -r -f /warehouse/gmall/dwt/dwt_activity_topic/dt=$clear_date
;;
"dwt_coupon_topic" )
hive -e "$dwt_coupon_topic"
hadoop fs -rm -r -f /warehouse/gmall/dwt/dwt_coupon_topic/dt=$clear_date
;;
"dwt_area_topic" )
hive -e "$dwt_area_topic"
hadoop fs -rm -r -f /warehouse/gmall/dwt/dwt_area_topic/dt=$clear_date
;;
"all" )
hive -e "$dwt_visitor_topic$dwt_user_topic$dwt_sku_topic$dwt_activity_topic$dwt_coupon_topic$dwt_area_topic"
hadoop fs -rm -r -f /warehouse/gmall/dwt/dwt_visitor_topic/dt=$clear_date
hadoop fs -rm -r -f /warehouse/gmall/dwt/dwt_user_topic/dt=$clear_date
hadoop fs -rm -r -f /warehouse/gmall/dwt/dwt_sku_topic/dt=$clear_date
hadoop fs -rm -r -f /warehouse/gmall/dwt/dwt_activity_topic/dt=$clear_date
hadoop fs -rm -r -f /warehouse/gmall/dwt/dwt_coupon_topic/dt=$clear_date
hadoop fs -rm -r -f /warehouse/gmall/dwt/dwt_area_topic/dt=$clear_date
;;
esac
(2)增加脚本执行权限
[atguigu@hadoop102 bin]$ chmod 777 dws_to_dwt.sh
2)脚本使用
(1)执行脚本
[atguigu@hadoop102 bin]$ dws_to_dwt.sh 2020-06-14
(2)查看导入数据
第六章 数仓搭建-ADS层
建表说明
ADS层不涉及建模,建表根据具体需求而定。
6.1 访客主题
6.1.1 访客统计
源自的表:
dwd_page_log 页面日志表
dwt_visitor_topic 设备主题宽表
该需求为访客综合统计,其中包含若干指标,以下为对每个指标的解释说明。
指标 | 说明 | 对应字段 |
---|---|---|
访客数 | 统计访问人数 | uv_count |
页面停留时长 | 统计所有页面访问记录总时长,以秒为单位 | duration_sec |
平均页面停留时长 | 统计每个会话平均停留时长,以秒为单位 | avg_duration_sec |
页面浏览总数 | 统计所有页面访问记录总数 | page_count |
平均页面浏览数 | 统计每个会话平均浏览页面数 | avg_page_count |
会话总数 | 统计会话总数 | sv_count |
跳出数 | 统计只浏览一个页面的会话个数 | bounce_count |
跳出率 | 只有一个页面的会话的比例 | bounce_rate |
1.建表语句
DROP TABLE IF EXISTS ads_visit_stats;
CREATE EXTERNAL TABLE ads_visit_stats (
`dt` STRING COMMENT '统计日期',
`is_new` STRING COMMENT '新老标识,1:新,0:老',
`recent_days` BIGINT COMMENT '最近天数,1:最近1天,7:最近7天,30:最近30天',
`channel` STRING COMMENT '渠道',
`uv_count` BIGINT COMMENT '日活(访问人数)',
`duration_sec` BIGINT COMMENT '页面停留总时长',
`avg_duration_sec` BIGINT COMMENT '一次会话,页面停留平均时长,单位为描述',
`page_count` BIGINT COMMENT '页面总浏览数',
`avg_page_count` BIGINT COMMENT '一次会话,页面平均浏览数',
`sv_count` BIGINT COMMENT '会话次数',
`bounce_count` BIGINT COMMENT '跳出数',
`bounce_rate` DECIMAL(16,2) COMMENT '跳出率'
) COMMENT '访客统计'
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
LOCATION '/warehouse/gmall/ads/ads_visit_stats/';
2.数据装载
思路分析:该需求的关键点为会话的划分,总体实现思路可分为以下几步:
第一步:对所有页面访问记录进行会话的划分。
第二步:统计每个会话的浏览时长和浏览页面数。
第三步:统计上述各指标。
insert overwrite table ads_visit_stats
select * from ads_visit_stats
union
select
'2020-06-14' dt,
is_new,
recent_days,
channel,
count(distinct(mid_id)) uv_count,
cast(sum(duration)/1000 as bigint) duration_sec,
cast(avg(duration)/1000 as bigint) avg_duration_sec,
sum(page_count) page_count,
cast(avg(page_count) as bigint) avg_page_count,
count(*) sv_count,
sum(if(page_count=1,1,0)) bounce_count,
cast(sum(if(page_count=1,1,0))/count(*)*100 as decimal(16,2)) bounce_rate
from
(
select
session_id,
mid_id,
is_new,
recent_days,
channel,
count(*) page_count,
sum(during_time) duration
from
(
select
mid_id,
channel,
recent_days,
is_new,
last_page_id,
page_id,
during_time,
concat(mid_id,'-',last_value(if(last_page_id is null,ts,null),true) over (partition by recent_days,mid_id order by ts)) session_id
from
(
select
mid_id,
channel,
last_page_id,
page_id,
during_time,
ts,
recent_days,
if(visit_date_first>=date_add('2020-06-14',-recent_days+1),'1','0') is_new
from
(
select
t1.mid_id,
t1.channel,
t1.last_page_id,
t1.page_id,
t1.during_time,
t1.dt,
t1.ts,
t2.visit_date_first
from
(
select
mid_id,
channel,
last_page_id,
page_id,
during_time,
dt,
ts
from dwd_page_log
where dt>=date_add('2020-06-14',-30)
)t1
left join
(
select
mid_id,
visit_date_first
from dwt_visitor_topic
where dt='2020-06-14'
)t2
on t1.mid_id=t2.mid_id
)t3 lateral view explode(Array(1,7,30)) tmp as recent_days
where dt>=date_add('2020-06-14',-recent_days+1)
)t4
)t5
group by session_id,mid_id,is_new,recent_days,channel
)t6
group by is_new,recent_days,channel;
6.1.2 路径分析
用户路径分析,顾名思义,就是指用户在APP或网站中的访问路径。为了衡量网站优化的效果或营销推广的效果,以及了解用户行为偏好,时常要对访问路径进行分析。
用户访问路径的可视化通常使用桑基图。如下图所示,该图可真实还原用户的访问路径,包括页面跳转和页面访问次序。
桑基图需要我们提供每种页面跳转的次数,每个跳转由source/target表示,source指跳转起始页面,target表示跳转终到页面。
1.建表语句
DROP TABLE IF EXISTS ads_page_path;
CREATE EXTERNAL TABLE ads_page_path
(
`dt` STRING COMMENT '统计日期',
`recent_days` BIGINT COMMENT '最近天数,1:最近1天,7:最近7天,30:最近30天',
`source` STRING COMMENT '跳转起始页面ID',
`target` STRING COMMENT '跳转终到页面ID',
`path_count` BIGINT COMMENT '跳转次数'
) COMMENT '页面浏览路径'
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
LOCATION '/warehouse/gmall/ads/ads_page_path/';
2.数据装载
思路分析:该需求要统计的就是每种跳转的次数,故理论上对source/target进行分组count()即可。统计时需注意以下两点:
第一点:桑基图的source不允许为空,但target可为空。
第二点:桑基图所展示的流程不允许存在环。
insert overwrite table ads_page_path
select * from ads_page_path
union
select
'2020-06-14',
recent_days,
source,
target,
count(*)
from
(
select
recent_days,
concat('step-',step,':',source) source,
concat('step-',step+1,':',target) target
from
(
select
recent_days,
page_id source,
-- 窗口函数
lead(page_id,1,null) over (partition by recent_days,session_id order by ts) target,
row_number() over (partition by recent_days,session_id order by ts) step
from
(
select
recent_days,
last_page_id,
page_id,
ts,
concat(mid_id,'-',last_value(if(last_page_id is null,ts,null),true) over (partition by mid_id,recent_days order by ts)) session_id
from dwd_page_log lateral view explode(Array(1,7,30)) tmp as recent_days
where dt>=date_add('2020-06-14',-30)
and dt>=date_add('2020-06-14',-recent_days+1)
)t2
)t3
)t4
group by recent_days,source,target;
6.2 用户主题
6.2.1 用户统计
该需求为用户综合统计,其中包含若干指标,以下为对每个指标的解释说明。
指标 | 说明 | 对应字段 |
---|---|---|
新增用户数 | 统计新增注册用户人数 | new_user_count |
新增下单用户数 | 统计新增下单用户人数 | new_order_user_count |
下单总金额 | 统计所有订单总额 | order_final_amount |
下单用户数 | 统计下单用户总数 | order_user_count |
未下单用户数 | 统计活跃但未下单用户数 | no_order_user_count |
1.建表语句
DROP TABLE IF EXISTS ads_user_total;
CREATE EXTERNAL TABLE `ads_user_total` (
`dt` STRING COMMENT '统计日期',
`recent_days` BIGINT COMMENT '最近天数,0:累积值,1:最近1天,7:最近7天,30:最近30天',
`new_user_count` BIGINT COMMENT '新注册用户数',
`new_order_user_count` BIGINT COMMENT '新增下单用户数',
`order_final_amount` DECIMAL(16,2) COMMENT '下单总金额',
`order_user_count` BIGINT COMMENT '下单用户数',
`no_order_user_count` BIGINT COMMENT '未下单用户数(具体指活跃用户中未下单用户)'
) COMMENT '用户统计'
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
LOCATION '/warehouse/gmall/ads/ads_user_total/';
2.数据装载
insert overwrite table ads_user_total
select * from ads_user_total
union
select
'2020-06-14',
recent_days,
sum(if(login_date_first>=recent_days_ago,1,0)) new_user_count,
sum(if(order_date_first>=recent_days_ago,1,0)) new_order_user_count,
sum(order_final_amount) order_final_amount,
sum(if(order_final_amount>0,1,0)) order_user_count,
sum(if(login_date_last>=recent_days_ago and order_final_amount=0,1,0)) no_order_user_count
from
(
select
recent_days,
user_id,
login_date_first,
login_date_last,
order_date_first,
case when recent_days=0 then order_final_amount
when recent_days=1 then order_last_1d_final_amount
when recent_days=7 then order_last_7d_final_amount
when recent_days=30 then order_last_30d_final_amount
end order_final_amount,
if(recent_days=0,'1970-01-01',date_add('2020-06-14',-recent_days+1)) recent_days_ago
from dwt_user_topic lateral view explode(Array(0,1,7,30)) tmp as recent_days
where dt='2020-06-14'
)t1
group by recent_days;
6.2.2 用户变动统计
该需求包括两个指标,分别为流失用户数和回流用户数,以下为对两个指标的解释说明。
指标 | 说明 | 对应字段 |
---|---|---|
流失用户数 | 之前活跃过的用户,最近一段时间未活跃,就称为流失用户。此处要求统计7日前(只包含7日前当天)活跃,但最近7日未活跃的用户总数。 | user_churn_count |
回流用户数 | 之前的活跃用户,一段时间未活跃(流失),今日又活跃了,就称为回流用户。此处要求统计回流用户总数。 | new_order_user_count |
1.建表语句
DROP TABLE IF EXISTS ads_user_change;
CREATE EXTERNAL TABLE `ads_user_change` (
`dt` STRING COMMENT '统计日期',
`user_churn_count` BIGINT COMMENT '流失用户数',
`user_back_count` BIGINT COMMENT '回流用户数'
) COMMENT '用户变动统计'
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
LOCATION '/warehouse/gmall/ads/ads_user_change/';
2.数据装载
思路分析:
-
流失用户:末次活跃时间为7日前的用户即为流失用户。
-
回流用户:末次活跃时间为今日,上次活跃时间在8日前的用户即为回流用户。
insert overwrite table ads_user_change
select * from ads_user_change
union
select
churn.dt,
user_churn_count,
user_back_count
from
(
select
'2020-06-14' dt,
count(*) user_churn_count
from dwt_user_topic
where dt='2020-06-14'
and login_date_last=date_add('2020-06-14',-7)
)churn
join
(
select
'2020-06-14' dt,
count(*) user_back_count
from
(
select
user_id,
login_date_last
from dwt_user_topic
where dt='2020-06-14'
and login_date_last='2020-06-14'
)t1
join
(
select
user_id,
login_date_last login_date_previous
from dwt_user_topic
where dt=date_add('2020-06-14',-1)
)t2
on t1.user_id=t2.user_id
where datediff(login_date_last,login_date_previous)>=8
)back
on churn.dt=back.dt;
6.2.3 用户行为漏斗分析
漏斗分析是一个数据分析模型,它能够科学反映一个业务过程从起点到终点各阶段用户转化情况。由于其能将各阶段环节都展示出来,故哪个阶段存在问题,就能一目了然。
用户行为漏斗分析也称为转化率,具体求何种转化率视具体需求而定,比如,消费用户转化率指的是单日日活中最终有多少用户下单消费,即消费用户转化率=单日消费用户数/日活数。
该需求要求统计一个完整的购物流程各个阶段的人数。
1.建表语句
DROP TABLE IF EXISTS ads_user_action;
CREATE EXTERNAL TABLE `ads_user_action` (
`dt` STRING COMMENT '统计日期',
`recent_days` BIGINT COMMENT '最近天数,1:最近1天,7:最近7天,30:最近30天',
`home_count` BIGINT COMMENT '浏览首页人数',
`good_detail_count` BIGINT COMMENT '浏览商品详情页人数',
`cart_count` BIGINT COMMENT '加入购物车人数',
`order_count` BIGINT COMMENT '下单人数',
`payment_count` BIGINT COMMENT '支付人数'
) COMMENT '漏斗分析'
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
LOCATION '/warehouse/gmall/ads/ads_user_action/';
2.数据装载
with
tmp_page as
(
select
'2020-06-14' dt,
recent_days,
sum(if(array_contains(pages,'home'),1,0)) home_count,
sum(if(array_contains(pages,'good_detail'),1,0)) good_detail_count
from
(
select
recent_days,
mid_id,
collect_set(page_id) pages
from
(
select
dt,
mid_id,
page.page_id
from dws_visitor_action_daycount lateral view explode(page_stats) tmp as page
where dt>=date_add('2020-06-14',-29)
and page.page_id in('home','good_detail')
)t1 lateral view explode(Array(1,7,30)) tmp as recent_days
where dt>=date_add('2020-06-14',-recent_days+1)
group by recent_days,mid_id
)t2
group by recent_days
),
tmp_cop as
(
select
'2020-06-14' dt,
recent_days,
sum(if(cart_count>0,1,0)) cart_count,
sum(if(order_count>0,1,0)) order_count,
sum(if(payment_count>0,1,0)) payment_count
from
(
select
recent_days,
user_id,
case
when recent_days=1 then cart_last_1d_count
when recent_days=7 then cart_last_7d_count
when recent_days=30 then cart_last_30d_count
end cart_count,
case
when recent_days=1 then order_last_1d_count
when recent_days=7 then order_last_7d_count
when recent_days=30 then order_last_30d_count
end order_count,
case
when recent_days=1 then payment_last_1d_count
when recent_days=7 then payment_last_7d_count
when recent_days=30 then payment_last_30d_count
end payment_count
from dwt_user_topic lateral view explode(Array(1,7,30)) tmp as recent_days
where dt='2020-06-14'
)t1
group by recent_days
)
insert overwrite table ads_user_action
select * from ads_user_action
union
select
tmp_page.dt,
tmp_page.recent_days,
home_count,
good_detail_count,
cart_count,
order_count,
payment_count
from tmp_page
join tmp_cop
on tmp_page.recent_days=tmp_cop.recent_days;
6.2.4 用户留存率
留存分析一般包含新增留存和活跃留存分析。
新增留存分析是分析某天的新增用户中,有多少人有后续的活跃行为。活跃留存分析是分析某天的活跃用户中,有多少人有后续的活跃行为。
留存分析是衡量产品对用户价值高低的重要指标。
此处要求统计新增留存率,新增留存率具体是指留存用户数与新增用户数的比值,例如2020-06-14新增100个用户,1日之后(2020-06-15)这100人中有80个人活跃了,那2020-06-14的1日留存数则为80,2020-06-14的1日留存率则为80%。
要求统计每天的1至7日留存率,如下图所示。
1.建表语句
DROP TABLE IF EXISTS ads_user_retention;
CREATE EXTERNAL TABLE ads_user_retention (
`dt` STRING COMMENT '统计日期',
`create_date` STRING COMMENT '用户新增日期',
`retention_day` BIGINT COMMENT '截至当前日期留存天数',
`retention_count` BIGINT COMMENT '留存用户数量',
`new_user_count` BIGINT COMMENT '新增用户数量',
`retention_rate` DECIMAL(16,2) COMMENT '留存率'
) COMMENT '用户留存率'
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
LOCATION '/warehouse/gmall/ads/ads_user_retention/';
2.数据装载
insert overwrite table ads_user_retention
select * from ads_user_retention
union
select
'2020-06-14', -- 统计日期
login_date_first create_date, -- 用户新增日期
datediff('2020-06-14',login_date_first) retention_day,
sum(if(login_date_last='2020-06-14',1,0)) retention_count,
count(*) new_user_count,
cast(sum(if(login_date_last='2020-06-14',1,0))/count(*)*100 as decimal(16,2)) retention_rate
from dwt_user_topic
where dt='2020-06-14'
and login_date_first>=date_add('2020-06-14',-7)
and login_date_first<'2020-06-14'
group by login_date_first;
6.3 商品主题
6.3.1 商品统计
该指标为商品综合统计,包含每个spu被下单总次数和被下单总金额。
1.建表语句
DROP TABLE IF EXISTS ads_order_spu_stats;
CREATE EXTERNAL TABLE `ads_order_spu_stats` (
`dt` STRING COMMENT '统计日期',
`recent_days` BIGINT COMMENT '最近天数,1:最近1天,7:最近7天,30:最近30天',
`spu_id` STRING COMMENT '商品ID',
`spu_name` STRING COMMENT '商品名称',
`tm_id` STRING COMMENT '品牌ID',
`tm_name` STRING COMMENT '品牌名称',
`category3_id` STRING COMMENT '三级品类ID',
`category3_name` STRING COMMENT '三级品类名称',
`category2_id` STRING COMMENT '二级品类ID',
`category2_name` STRING COMMENT '二级品类名称',
`category1_id` STRING COMMENT '一级品类ID',
`category1_name` STRING COMMENT '一级品类名称',
`order_count` BIGINT COMMENT '订单数',
`order_amount` DECIMAL(16,2) COMMENT '订单金额'
) COMMENT '商品销售统计'
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
LOCATION '/warehouse/gmall/ads/ads_order_spu_stats/';
2.数据装载
insert overwrite table ads_order_spu_stats
select * from ads_order_spu_stats
union
select
'2020-06-14' dt,
recent_days,
spu_id,
spu_name,
tm_id,
tm_name,
category3_id,
category3_name,
category2_id,
category2_name,
category1_id,
category1_name,
sum(order_count),
sum(order_amount)
from
(
select
recent_days,
sku_id,
case
when recent_days=1 then order_last_1d_count
when recent_days=7 then order_last_7d_count
when recent_days=30 then order_last_30d_count
end order_count,
case
when recent_days=1 then order_last_1d_final_amount
when recent_days=7 then order_last_7d_final_amount
when recent_days=30 then order_last_30d_final_amount
end order_amount
from dwt_sku_topic lateral view explode(Array(1,7,30)) tmp as recent_days
where dt='2020-06-14'
)t1
left join
(
select
id,
spu_id,
spu_name,
tm_id,
tm_name,
category3_id,
category3_name,
category2_id,
category2_name,
category1_id,
category1_name
from dim_sku_info
where dt='2020-06-14'
)t2
on t1.sku_id=t2.id
group by recent_days,spu_id,spu_name,tm_id,tm_name,category3_id,category3_name,category2_id,category2_name,category1_id,category1_name;
6.3.2 品牌复购率
品牌复购率是指一段时间内重复购买某品牌的人数与购买过该品牌的人数的比值。重复购买即购买次数大于等于2,购买过即购买次数大于1。
此处要求统计最近1,7,30天的各品牌复购率。
1.建表语句
DROP TABLE IF EXISTS ads_repeat_purchase;
CREATE EXTERNAL TABLE `ads_repeat_purchase` (
`dt` STRING COMMENT '统计日期',
`recent_days` BIGINT COMMENT '最近天数,1:最近1天,7:最近7天,30:最近30天',
`tm_id` STRING COMMENT '品牌ID',
`tm_name` STRING COMMENT '品牌名称',
`order_repeat_rate` DECIMAL(16,2) COMMENT '复购率'
) COMMENT '品牌复购率'
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
LOCATION '/warehouse/gmall/ads/ads_repeat_purchase/';
2.数据装载
思路分析:该需求可分两步实现:
第一步:统计每个用户购买每个品牌的次数。
第二步:分别统计购买次数大于1的人数和大于2的人数。
insert overwrite table ads_repeat_purchase
select * from ads_repeat_purchase
union
select
'2020-06-14' dt,
recent_days,
tm_id,
tm_name,
cast(sum(if(order_count>=2,1,0))/sum(if(order_count>=1,1,0))*100 as decimal(16,2))
from
(
select
recent_days,
user_id,
tm_id,
tm_name,
sum(order_count) order_count
from
(
select
recent_days,
user_id,
sku_id,
count(*) order_count
from dwd_order_detail lateral view explode(Array(1,7,30)) tmp as recent_days
where dt>=date_add('2020-06-14',-29)
and dt>=date_add('2020-06-14',-recent_days+1)
group by recent_days, user_id,sku_id
)t1
left join
(
select
id,
tm_id,
tm_name
from dim_sku_info
where dt='2020-06-14'
)t2
on t1.sku_id=t2.id
group by recent_days,user_id,tm_id,tm_name
)t3
group by recent_days,tm_id,tm_name;
6.4 订单主题
6.4.1 订单统计
该需求包含订单总数,订单总金额和下单总人数。
1.建表语句
DROP TABLE IF EXISTS ads_order_total;
CREATE EXTERNAL TABLE `ads_order_total` (
`dt` STRING COMMENT '统计日期',
`recent_days` BIGINT COMMENT '最近天数,1:最近1天,7:最近7天,30:最近30天',
`order_count` BIGINT COMMENT '订单数',
`order_amount` DECIMAL(16,2) COMMENT '订单金额',
`order_user_count` BIGINT COMMENT '下单人数'
) COMMENT '订单统计'
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
LOCATION '/warehouse/gmall/ads/ads_order_total/';
2.数据装载
insert overwrite table ads_order_total
select * from ads_order_total
union
select
'2020-06-14',
recent_days,
sum(order_count),
sum(order_final_amount) order_final_amount,
sum(if(order_final_amount>0,1,0)) order_user_count
from
(
select
recent_days,
user_id,
case when recent_days=0 then order_count
when recent_days=1 then order_last_1d_count
when recent_days=7 then order_last_7d_count
when recent_days=30 then order_last_30d_count
end order_count,
case when recent_days=0 then order_final_amount
when recent_days=1 then order_last_1d_final_amount
when recent_days=7 then order_last_7d_final_amount
when recent_days=30 then order_last_30d_final_amount
end order_final_amount
from dwt_user_topic lateral view explode(Array(1,7,30)) tmp as recent_days
where dt='2020-06-14'
)t1
group by recent_days;
6.4.2 各地区订单统计
该需求包含各省份订单总数和订单总金额。
1.建表语句
DROP TABLE IF EXISTS ads_order_by_province;
CREATE EXTERNAL TABLE `ads_order_by_province` (
`dt` STRING COMMENT '统计日期',
`recent_days` BIGINT COMMENT '最近天数,1:最近1天,7:最近7天,30:最近30天',
`province_id` STRING COMMENT '省份ID',
`province_name` STRING COMMENT '省份名称',
`area_code` STRING COMMENT '地区编码',
`iso_code` STRING COMMENT '国际标准地区编码',
`iso_code_3166_2` STRING COMMENT '国际标准地区编码',
`order_count` BIGINT COMMENT '订单数',
`order_amount` DECIMAL(16,2) COMMENT '订单金额'
) COMMENT '各地区订单统计'
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
LOCATION '/warehouse/gmall/ads/ads_order_by_province/';
2.数据装载
insert overwrite table ads_order_by_province
select * from ads_order_by_province
union
select
dt,
recent_days,
province_id,
province_name,
area_code,
iso_code,
iso_3166_2,
order_count,
order_amount
from
(
select
'2020-06-14' dt,
recent_days,
province_id,
sum(order_count) order_count,
sum(order_amount) order_amount
from
(
select
recent_days,
province_id,
case
when recent_days=1 then order_last_1d_count
when recent_days=7 then order_last_7d_count
when recent_days=30 then order_last_30d_count
end order_count,
case
when recent_days=1 then order_last_1d_final_amount
when recent_days=7 then order_last_7d_final_amount
when recent_days=30 then order_last_30d_final_amount
end order_amount
from dwt_area_topic lateral view explode(Array(1,7,30)) tmp as recent_days
where dt='2020-06-14'
)t1
group by recent_days,province_id
)t2
join dim_base_province t3
on t2.province_id=t3.id;
6.5 优惠券主题
6.5.1 优惠券统计
该需求要求统计最近30日发布的所有优惠券的领用情况和补贴率,补贴率是指,优惠金额与使用优惠券的订单的原价金额的比值。
1.建表语句
DROP TABLE IF EXISTS ads_coupon_stats;
CREATE EXTERNAL TABLE ads_coupon_stats (
`dt` STRING COMMENT '统计日期',
`coupon_id` STRING COMMENT '优惠券ID',
`coupon_name` STRING COMMENT '优惠券名称',
`start_date` STRING COMMENT '发布日期',
`rule_name` STRING COMMENT '优惠规则,例如满100元减10元',
`get_count` BIGINT COMMENT '领取次数',
`order_count` BIGINT COMMENT '使用(下单)次数',
`expire_count` BIGINT COMMENT '过期次数',
`order_original_amount` DECIMAL(16,2) COMMENT '使用优惠券订单原始金额',
`order_final_amount` DECIMAL(16,2) COMMENT '使用优惠券订单最终金额',
`reduce_amount` DECIMAL(16,2) COMMENT '优惠金额',
`reduce_rate` DECIMAL(16,2) COMMENT '补贴率'
) COMMENT '商品销售统计'
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
LOCATION '/warehouse/gmall/ads/ads_coupon_stats/';
2.数据装载
insert overwrite table ads_coupon_stats
select * from ads_coupon_stats
union
select
'2020-06-14' dt,
t1.id,
coupon_name,
start_date,
rule_name,
get_count,
order_count,
expire_count,
order_original_amount,
order_final_amount,
reduce_amount,
reduce_rate
from
(
select
id,
coupon_name,
date_format(start_time,'yyyy-MM-dd') start_date,
case
when coupon_type='3201' then concat('满',condition_amount,'元减',benefit_amount,'元')
when coupon_type='3202' then concat('满',condition_num,'件打', (1-benefit_discount)*10,'折')
when coupon_type='3203' then concat('减',benefit_amount,'元')
end rule_name
from dim_coupon_info
where dt='2020-06-14'
and date_format(start_time,'yyyy-MM-dd')>=date_add('2020-06-14',-29)
)t1
left join
(
select
coupon_id,
get_count,
order_count,
expire_count,
order_original_amount,
order_final_amount,
order_reduce_amount reduce_amount,
cast(order_reduce_amount/order_original_amount as decimal(16,2)) reduce_rate
from dwt_coupon_topic
where dt='2020-06-14'
)t2
on t1.id=t2.coupon_id;
6.6 活动主题
6.6.1 活动统计
该需求要求统计最近30日发布的所有活动的参与情况和补贴率,补贴率是指,优惠金额与参与活动的订单原价金额的比值。
1.建表语句
DROP TABLE IF EXISTS ads_activity_stats;
CREATE EXTERNAL TABLE `ads_activity_stats` (
`dt` STRING COMMENT '统计日期',
`activity_id` STRING COMMENT '活动ID',
`activity_name` STRING COMMENT '活动名称',
`start_date` STRING COMMENT '活动开始日期',
`order_count` BIGINT COMMENT '参与活动订单数',
`order_original_amount` DECIMAL(16,2) COMMENT '参与活动订单原始金额',
`order_final_amount` DECIMAL(16,2) COMMENT '参与活动订单最终金额',
`reduce_amount` DECIMAL(16,2) COMMENT '优惠金额',
`reduce_rate` DECIMAL(16,2) COMMENT '补贴率'
) COMMENT '商品销售统计'
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
LOCATION '/warehouse/gmall/ads/ads_activity_stats/';
2.数据装载
insert overwrite table ads_activity_stats
select * from ads_activity_stats
union
select
'2020-06-14' dt,
t4.activity_id,
activity_name,
start_date,
order_count,
order_original_amount,
order_final_amount,
reduce_amount,
reduce_rate
from
(
select
activity_id,
activity_name,
date_format(start_time,'yyyy-MM-dd') start_date
from dim_activity_rule_info
where dt='2020-06-14'
and date_format(start_time,'yyyy-MM-dd')>=date_add('2020-06-14',-29)
group by activity_id,activity_name,start_time
)t4
left join
(
select
activity_id,
sum(order_count) order_count,
sum(order_original_amount) order_original_amount,
sum(order_final_amount) order_final_amount,
sum(order_reduce_amount) reduce_amount,
cast(sum(order_reduce_amount)/sum(order_original_amount)*100 as decimal(16,2)) reduce_rate
from dwt_activity_topic
where dt='2020-06-14'
group by activity_id
)t5
on t4.activity_id=t5.activity_id;
6.7 ADS层业务数据导入脚本
1)编写脚本
(1)在/home/atguigu/bin目录下创建脚本dwt_to_ads.sh
[atguigu@hadoop102 bin]$ vim dwt_to_ads.sh
在脚本中填写如下内容
#!/bin/bash
APP=gmall
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$2" ] ;then
do_date=$2
else
do_date=`date -d "-1 day" +%F`
fi
ads_activity_stats="
insert overwrite table ${APP}.ads_activity_stats
select * from ${APP}.ads_activity_stats
union
select
'$do_date' dt,
t4.activity_id,
activity_name,
start_date,
order_count,
order_original_amount,
order_final_amount,
reduce_amount,
reduce_rate
from
(
select
activity_id,
activity_name,
date_format(start_time,'yyyy-MM-dd') start_date
from ${APP}.dim_activity_rule_info
where dt='$do_date'
and date_format(start_time,'yyyy-MM-dd')>=date_add('$do_date',-29)
group by activity_id,activity_name,start_time
)t4
left join
(
select
activity_id,
sum(order_count) order_count,
sum(order_original_amount) order_original_amount,
sum(order_final_amount) order_final_amount,
sum(order_reduce_amount) reduce_amount,
cast(sum(order_reduce_amount)/sum(order_original_amount)*100 as decimal(16,2)) reduce_rate
from ${APP}.dwt_activity_topic
where dt='$do_date'
group by activity_id
)t5
on t4.activity_id=t5.activity_id;
"
ads_coupon_stats="
insert overwrite table ${APP}.ads_coupon_stats
select * from ${APP}.ads_coupon_stats
union
select
'$do_date' dt,
t1.id,
coupon_name,
start_date,
rule_name,
get_count,
order_count,
expire_count,
order_original_amount,
order_final_amount,
reduce_amount,
reduce_rate
from
(
select
id,
coupon_name,
date_format(start_time,'yyyy-MM-dd') start_date,
case
when coupon_type='3201' then concat('满',condition_amount,'元减',benefit_amount,'元')
when coupon_type='3202' then concat('满',condition_num,'件打', (1-benefit_discount)*10,'折')
when coupon_type='3203' then concat('减',benefit_amount,'元')
end rule_name
from ${APP}.dim_coupon_info
where dt='$do_date'
and date_format(start_time,'yyyy-MM-dd')>=date_add('$do_date',-29)
)t1
left join
(
select
coupon_id,
get_count,
order_count,
expire_count,
order_original_amount,
order_final_amount,
order_reduce_amount reduce_amount,
cast(order_reduce_amount/order_original_amount as decimal(16,2)) reduce_rate
from ${APP}.dwt_coupon_topic
where dt='$do_date'
)t2
on t1.id=t2.coupon_id;
"
ads_order_by_province="
insert overwrite table ${APP}.ads_order_by_province
select * from ${APP}.ads_order_by_province
union
select
dt,
recent_days,
province_id,
province_name,
area_code,
iso_code,
iso_3166_2,
order_count,
order_amount
from
(
select
'$do_date' dt,
recent_days,
province_id,
sum(order_count) order_count,
sum(order_amount) order_amount
from
(
select
recent_days,
province_id,
case
when recent_days=1 then order_last_1d_count
when recent_days=7 then order_last_7d_count
when recent_days=30 then order_last_30d_count
end order_count,
case
when recent_days=1 then order_last_1d_final_amount
when recent_days=7 then order_last_7d_final_amount
when recent_days=30 then order_last_30d_final_amount
end order_amount
from ${APP}.dwt_area_topic lateral view explode(Array(1,7,30)) tmp as recent_days
where dt='$do_date'
)t1
group by recent_days,province_id
)t2
join ${APP}.dim_base_province t3
on t2.province_id=t3.id;
"
ads_order_spu_stats="
insert overwrite table ${APP}.ads_order_spu_stats
select * from ${APP}.ads_order_spu_stats
union
select
'$do_date' dt,
recent_days,
spu_id,
spu_name,
tm_id,
tm_name,
category3_id,
category3_name,
category2_id,
category2_name,
category1_id,
category1_name,
sum(order_count),
sum(order_amount)
from
(
select
recent_days,
sku_id,
case
when recent_days=1 then order_last_1d_count
when recent_days=7 then order_last_7d_count
when recent_days=30 then order_last_30d_count
end order_count,
case
when recent_days=1 then order_last_1d_final_amount
when recent_days=7 then order_last_7d_final_amount
when recent_days=30 then order_last_30d_final_amount
end order_amount
from ${APP}.dwt_sku_topic lateral view explode(Array(1,7,30)) tmp as recent_days
where dt='$do_date'
)t1
left join
(
select
id,
spu_id,
spu_name,
tm_id,
tm_name,
category3_id,
category3_name,
category2_id,
category2_name,
category1_id,
category1_name
from ${APP}.dim_sku_info
where dt='$do_date'
)t2
on t1.sku_id=t2.id
group by recent_days,spu_id,spu_name,tm_id,tm_name,category3_id,category3_name,category2_id,category2_name,category1_id,category1_name;
"
ads_order_total="
insert overwrite table ${APP}.ads_order_total
select * from ${APP}.ads_order_total
union
select
'$do_date',
recent_days,
sum(order_count),
sum(order_final_amount) order_final_amount,
sum(if(order_final_amount>0,1,0)) order_user_count
from
(
select
recent_days,
user_id,
case when recent_days=0 then order_count
when recent_days=1 then order_last_1d_count
when recent_days=7 then order_last_7d_count
when recent_days=30 then order_last_30d_count
end order_count,
case when recent_days=0 then order_final_amount
when recent_days=1 then order_last_1d_final_amount
when recent_days=7 then order_last_7d_final_amount
when recent_days=30 then order_last_30d_final_amount
end order_final_amount
from ${APP}.dwt_user_topic lateral view explode(Array(1,7,30)) tmp as recent_days
where dt='$do_date'
)t1
group by recent_days;
"
ads_page_path="
insert overwrite table ${APP}.ads_page_path
select * from ${APP}.ads_page_path
union
select
'$do_date',
recent_days,
source,
target,
count(*)
from
(
select
recent_days,
concat('step-',step,':',source) source,
concat('step-',step+1,':',target) target
from
(
select
recent_days,
page_id source,
lead(page_id,1,null) over (partition by recent_days,session_id order by ts) target,
row_number() over (partition by recent_days,session_id order by ts) step
from
(
select
recent_days,
last_page_id,
page_id,
ts,
concat(mid_id,'-',last_value(if(last_page_id is null,ts,null),true) over (partition by mid_id,recent_days order by ts)) session_id
from ${APP}.dwd_page_log lateral view explode(Array(1,7,30)) tmp as recent_days
where dt>=date_add('$do_date',-30)
and dt>=date_add('$do_date',-recent_days+1)
)t2
)t3
)t4
group by recent_days,source,target;
"
ads_repeat_purchase="
insert overwrite table ${APP}.ads_repeat_purchase
select * from ${APP}.ads_repeat_purchase
union
select
'$do_date' dt,
recent_days,
tm_id,
tm_name,
cast(sum(if(order_count>=2,1,0))/sum(if(order_count>=1,1,0))*100 as decimal(16,2))
from
(
select
recent_days,
user_id,
tm_id,
tm_name,
sum(order_count) order_count
from
(
select
recent_days,
user_id,
sku_id,
count(*) order_count
from ${APP}.dwd_order_detail lateral view explode(Array(1,7,30)) tmp as recent_days
where dt>=date_add('$do_date',-29)
and dt>=date_add('$do_date',-recent_days+1)
group by recent_days, user_id,sku_id
)t1
left join
(
select
id,
tm_id,
tm_name
from ${APP}.dim_sku_info
where dt='$do_date'
)t2
on t1.sku_id=t2.id
group by recent_days,user_id,tm_id,tm_name
)t3
group by recent_days,tm_id,tm_name;
"
ads_user_action="
with
tmp_page as
(
select
'$do_date' dt,
recent_days,
sum(if(array_contains(pages,'home'),1,0)) home_count,
sum(if(array_contains(pages,'good_detail'),1,0)) good_detail_count
from
(
select
recent_days,
mid_id,
collect_set(page_id) pages
from
(
select
dt,
mid_id,
page.page_id
from ${APP}.dws_visitor_action_daycount lateral view explode(page_stats) tmp as page
where dt>=date_add('$do_date',-29)
and page.page_id in('home','good_detail')
)t1 lateral view explode(Array(1,7,30)) tmp as recent_days
where dt>=date_add('$do_date',-recent_days+1)
group by recent_days,mid_id
)t2
group by recent_days
),
tmp_cop as
(
select
'$do_date' dt,
recent_days,
sum(if(cart_count>0,1,0)) cart_count,
sum(if(order_count>0,1,0)) order_count,
sum(if(payment_count>0,1,0)) payment_count
from
(
select
recent_days,
user_id,
case
when recent_days=1 then cart_last_1d_count
when recent_days=7 then cart_last_7d_count
when recent_days=30 then cart_last_30d_count
end cart_count,
case
when recent_days=1 then order_last_1d_count
when recent_days=7 then order_last_7d_count
when recent_days=30 then order_last_30d_count
end order_count,
case
when recent_days=1 then payment_last_1d_count
when recent_days=7 then payment_last_7d_count
when recent_days=30 then payment_last_30d_count
end payment_count
from ${APP}.dwt_user_topic lateral view explode(Array(1,7,30)) tmp as recent_days
where dt='$do_date'
)t1
group by recent_days
)
insert overwrite table ${APP}.ads_user_action
select * from ${APP}.ads_user_action
union
select
tmp_page.dt,
tmp_page.recent_days,
home_count,
good_detail_count,
cart_count,
order_count,
payment_count
from tmp_page
join tmp_cop
on tmp_page.recent_days=tmp_cop.recent_days;
"
ads_user_change="
insert overwrite table ${APP}.ads_user_change
select * from ${APP}.ads_user_change
union
select
churn.dt,
user_churn_count,
user_back_count
from
(
select
'$do_date' dt,
count(*) user_churn_count
from ${APP}.dwt_user_topic
where dt='$do_date'
and login_date_last=date_add('$do_date',-7)
)churn
join
(
select
'$do_date' dt,
count(*) user_back_count
from
(
select
user_id,
login_date_last
from ${APP}.dwt_user_topic
where dt='$do_date'
and login_date_last='$do_date'
)t1
join
(
select
user_id,
login_date_last login_date_previous
from ${APP}.dwt_user_topic
where dt=date_add('$do_date',-1)
)t2
on t1.user_id=t2.user_id
where datediff(login_date_last,login_date_previous)>=8
)back
on churn.dt=back.dt;
"
ads_user_retention="
insert overwrite table ${APP}.ads_user_retention
select * from ${APP}.ads_user_retention
union
select
'$do_date',
login_date_first create_date,
datediff('$do_date',login_date_first) retention_day,
sum(if(login_date_last='$do_date',1,0)) retention_count,
count(*) new_user_count,
cast(sum(if(login_date_last='$do_date',1,0))/count(*)*100 as decimal(16,2)) retention_rate
from ${APP}.dwt_user_topic
where dt='$do_date'
and login_date_first>=date_add('$do_date',-7)
and login_date_first<'$do_date'
group by login_date_first;
"
ads_user_total="
insert overwrite table ${APP}.ads_user_total
select * from ${APP}.ads_user_total
union
select
'$do_date',
recent_days,
sum(if(login_date_first>=recent_days_ago,1,0)) new_user_count,
sum(if(order_date_first>=recent_days_ago,1,0)) new_order_user_count,
sum(order_final_amount) order_final_amount,
sum(if(order_final_amount>0,1,0)) order_user_count,
sum(if(login_date_last>=recent_days_ago and order_final_amount=0,1,0)) no_order_user_count
from
(
select
recent_days,
user_id,
login_date_first,
login_date_last,
order_date_first,
case when recent_days=0 then order_final_amount
when recent_days=1 then order_last_1d_final_amount
when recent_days=7 then order_last_7d_final_amount
when recent_days=30 then order_last_30d_final_amount
end order_final_amount,
if(recent_days=0,'1970-01-01',date_add('$do_date',-recent_days+1)) recent_days_ago
from ${APP}.dwt_user_topic lateral view explode(Array(0,1,7,30)) tmp as recent_days
where dt='$do_date'
)t1
group by recent_days;
"
ads_visit_stats="
insert overwrite table ${APP}.ads_visit_stats
select * from ${APP}.ads_visit_stats
union
select
'$do_date' dt,
is_new,
recent_days,
channel,
count(distinct(mid_id)) uv_count,
cast(sum(duration)/1000 as bigint) duration_sec,
cast(avg(duration)/1000 as bigint) avg_duration_sec,
sum(page_count) page_count,
cast(avg(page_count) as bigint) avg_page_count,
count(*) sv_count,
sum(if(page_count=1,1,0)) bounce_count,
cast(sum(if(page_count=1,1,0))/count(*)*100 as decimal(16,2)) bounce_rate
from
(
select
session_id,
mid_id,
is_new,
recent_days,
channel,
count(*) page_count,
sum(during_time) duration
from
(
select
mid_id,
channel,
recent_days,
is_new,
last_page_id,
page_id,
during_time,
concat(mid_id,'-',last_value(if(last_page_id is null,ts,null),true) over (partition by recent_days,mid_id order by ts)) session_id
from
(
select
mid_id,
channel,
last_page_id,
page_id,
during_time,
ts,
recent_days,
if(visit_date_first>=date_add('$do_date',-recent_days+1),'1','0') is_new
from
(
select
t1.mid_id,
t1.channel,
t1.last_page_id,
t1.page_id,
t1.during_time,
t1.dt,
t1.ts,
t2.visit_date_first
from
(
select
mid_id,
channel,
last_page_id,
page_id,
during_time,
dt,
ts
from ${APP}.dwd_page_log
where dt>=date_add('$do_date',-30)
)t1
left join
(
select
mid_id,
visit_date_first
from ${APP}.dwt_visitor_topic
where dt='$do_date'
)t2
on t1.mid_id=t2.mid_id
)t3 lateral view explode(Array(1,7,30)) tmp as recent_days
where dt>=date_add('$do_date',-recent_days+1)
)t4
)t5
group by session_id,mid_id,is_new,recent_days,channel
)t6
group by is_new,recent_days,channel;
"
case $1 in
"ads_activity_stats" )
hive -e "$ads_activity_stats"
;;
"ads_coupon_stats" )
hive -e "$ads_coupon_stats"
;;
"ads_order_by_province" )
hive -e "$ads_order_by_province"
;;
"ads_order_spu_stats" )
hive -e "$ads_order_spu_stats"
;;
"ads_order_total" )
hive -e "$ads_order_total"
;;
"ads_page_path" )
hive -e "$ads_page_path"
;;
"ads_repeat_purchase" )
hive -e "$ads_repeat_purchase"
;;
"ads_user_action" )
hive -e "$ads_user_action"
;;
"ads_user_change" )
hive -e "$ads_user_change"
;;
"ads_user_retention" )
hive -e "$ads_user_retention"
;;
"ads_user_total" )
hive -e "$ads_user_total"
;;
"ads_visit_stats" )
hive -e "$ads_visit_stats"
;;
"all" )
hive -e "$ads_activity_stats$ads_coupon_stats$ads_order_by_province$ads_order_spu_stats$ads_order_total$ads_page_path$ads_repeat_purchase$ads_user_action$ads_user_change$ads_user_retention$ads_user_total$ads_visit_stats"
;;
esac
(2)增加脚本执行权限
[atguigu@hadoop102 bin]$ chmod 777 dwt_to_ads.sh
2)脚本使用
(1)执行脚本
[atguigu@hadoop102 bin]$ dwt_to_ads.sh all 2020-06-14
(2)查看数据是否导入