Hive函数、运算符使用

一、Hive内置运算符

随着Hive版本的不断发展,在Hive SQL中支持的、内置的运算符也越来越多。可以使用下面的命令查看当下支持的运算符和函数,并且查看其详细的使用方式。

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF
也可以使用课程附件中的中文版本运算符函数说明文档进行查看。

-- 显示所有的函数和运算符
show functions;
-- 查看运算符或者函数的使用说明
describe function +;
-- 使用extended 可以查看更加详细的使用说明
describe function extended +;

从Hive 0.13.0开始,select查询语句FROM关键字是可选的(例如SELECT 1+1)。因此可以使用这种方式来练习测试内置的运算符、函数的功能。

除此之外,还可以通过创建一张虚表dual来满足于测试需求。

-- 1、创建表dual
create table dual(id string);
-- 2、加载一个文件dual.txt到dual表中
-- dual.txt只有一行内容:内容为一个空格
-- 3、在select查询语句中使用dual表完成运算符、函数功能测试
select 1+1 from dual;

1.1 关系运算符

关系运算符是二元运算符,执行的是两个操作数的比较运算。每个关系运算符都返回boolean类型结果(TRUE或FALSE)。

  • 等值比较: = 、==
  • 不等值比较: <> 、!=
  • 小于比较: <
  • 小于等于比较: <=
  • 大于比较: >
  • 大于等于比较: >=
  • 空值判断: IS NULL
  • 非空判断: IS NOT NULL
  • LIKE比较: LIKE
  • JAVA的LIKE操作: RLIKE
  • REGEXP操作: REGEXP
-- is null空值判断
select 1 from dual where 'itcast' is null;

-- is not null 非空值判断
select 1 from dual where 'itcast' is not null;

-- like比较: _表示任意单个字符 %表示任意数量字符
-- 否定比较: NOT A like B
select 1 from dual where 'itcast' like 'it_';
select 1 from dual where 'itcast' like 'it%';
select 1 from dual where not 'itcast' like 'hadoo_';

-- rlike:确定字符串是否匹配正则表达式,是REGEXP_LIKE()的同义词。
select 1 from dual where 'itcast' rlike '^i.*t$';
select 1 from dual where '123456' rlike '^\\d+$';  -- 判断是否全为数字
select 1 from dual where '123456aa' rlike '^\\d+$';

-- regexp:功能与rlike相同 用于判断字符串是否匹配正则表达式
select 1 from dual where 'itcast' regexp '^i.*t$';

1.2 算术运算符

算术运算符操作数必须是数值类型。 分为一元运算符和二元运算符; 一元运算符,只有一个操作数; 二元运算符有两个操作数,运算符在两个操作数之间。

  • 加法操作: +
  • 减法操作: -
  • 乘法操作: *
  • 除法操作: /
  • 取整操作: div
  • 取余操作: %
  • 位与操作: &
  • 位或操作: |
  • 位异或操作: ^
  • 位取反操作: ~
-- 取整操作: div  给出将A除以B所得的整数部分。例如17 div 3得出5。
select 17 div 3;

-- 取余操作: %  也叫做取模  A除以B所得的余数部分
select 17 % 3;

-- 位与操作: &  A和B按位进行与操作的结果。 与表示两个都为1则结果为1
select 4 & 8 from dual;  --4转换二进制:0100 8转换二进制:1000
select 6 & 4 from dual;  --4转换二进制:0100 6转换二进制:0110

-- 位或操作: |  A和B按位进行或操作的结果  或表示有一个为1则结果为1
select 4 | 8 from dual;
select 6 | 4 from dual;

-- 位异或操作: ^ A和B按位进行异或操作的结果 异或表示两个不同则结果为1
select 4 ^ 8 from dual;
select 6 ^ 4 from dual;

1.3 逻辑运算符

  • 与操作: A AND B
  • 或操作: A OR B
  • 非操作: NOT A 、!A
  • 在:A IN (val1, val2, ...)
  • 不在:A NOT IN (val1, val2, ...)
  • 逻辑是否存在: [NOT] EXISTS (subquery)
-- 与操作: A AND B   如果A和B均为TRUE,则为TRUE,否则为FALSE。如果A或B为NULL,则为NULL。
select 1 from dual where 3>1 and 2>1;

-- 或操作: A OR B   如果A或B或两者均为TRUE,则为TRUE,否则为FALSE。
select 1 from dual where 3>1 or 2!=2;

-- 非操作: NOT A 、!A   如果A为FALSE,则为TRUE;如果A为NULL,则为NULL。否则为FALSE。
select 1 from dual where not 2>1;
select 1 from dual where !2=1;

-- 在:A IN (val1, val2, ...)  如果A等于任何值,则为TRUE。
select 1 from dual where 11 in(11,22,33);

-- 不在:A NOT IN (val1, val2, ...) 如果A不等于任何值,则为TRUE
select 1 from dual where 11 not in(22,33,44);

-- 逻辑是否存在: [NOT] EXISTS (subquery) 如果子查询返回至少一行,则为TRUE。
select A.* from A
where exists (select B.id from B where A.id = B.id)

二、Hive函数入门

2.1 函数概述

如同RDBMS中标准SQL语法一样,Hive SQL也内建了不少函数,满足于用户在不同场合下的数据分析需求,提高开发SQL数据分析的效率。
可以使用show functions查看当下版本支持的函数,并且可以通过describe function extended funcname来查看函数的使用方式和方法。
img

2.2 函数分类

Hive的函数很多,除了自己内置所支持的函数之外,还支持用户自己定义开发函数。

针对内置的函数,可以根据函数的应用类型进行归纳分类,比如:数值类型函数、日期类型函数、字符串类型函数、集合函数、条件函数等;

针对用户自定义函数,可以根据函数的输入输出行数进行分类,比如:UDF、UDAF、UDTF。

img

内置函数分类

所谓的内置函数(buildin)指的是Hive开发实现好,直接可以使用的函数,也叫做内建函数。

官方文档地址:https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF

内置函数根据应用归类整体可以分为以下8大种类型,我们将对其中重要的,使用频率高的函数使用进行详细讲解。

String Functions 字符串函数

主要针对字符串数据类型进行操作,比如下面这些:

  • 字符串长度函数:length
  • 字符串反转函数:reverse
  • 字符串连接函数:concat
  • 带分隔符字符串连接函数:concat_ws
  • 字符串截取函数:substr,substring
    -字符串转大写函数:upper,ucase
  • 字符串转小写函数:lower,lcase
  • 去空格函数:trim
  • 左边去空格函数:ltrim
  • 右边去空格函数:rtrim
  • 正则表达式替换函数:regexp_replace
  • 正则表达式解析函数:regexp_extract
  • URL解析函数:parse_url
  • json解析函数:get_json_object
  • 空格字符串函数:space
  • 重复字符串函数:repeat
  • 首字符ascii函数:ascii
  • 左补足函数:lpad
  • 右补足函数:rpad
  • 分割字符串函数: split
  • 集合查找函数: find_in_set
------------String Functions 字符串函数------------
describe function extended find_in_set;

-- 字符串长度函数:length(str | binary)
select length("angelababy");

-- 字符串反转函数:reverse
select reverse("angelababy");

-- 字符串连接函数:concat(str1, str2, ... strN)
select concat("angela","baby");

-- 带分隔符字符串连接函数:concat_ws(separator, [string | array(string)]+)
select concat_ws('.', 'www', array('itcast', 'cn'));

-- 字符串截取函数:substr(str, pos[, len]) 或者  substring(str, pos[, len])
select substr("angelababy",-2); --pos是从1开始的索引,如果为负数则倒着数
select substr("angelababy",2,2);

-- 字符串转大写函数:upper,ucase
select upper("angelababy");
select ucase("angelababy");

-- 字符串转小写函数:lower,lcase
select lower("ANGELABABY");
select lcase("ANGELABABY");

-- 去空格函数:trim 去除左右两边的空格
select trim(" angelababy ");

-- 左边去空格函数:ltrim
select ltrim(" angelababy ");

-- 右边去空格函数:rtrim
select rtrim(" angelababy ");

-- 正则表达式替换函数:regexp_replace(str, regexp, rep)
select regexp_replace('100-200', '(\\d+)', 'num');

-- 正则表达式解析函数:regexp_extract(str, regexp[, idx]) 提取正则匹配到的指定组内容
select regexp_extract('100-200', '(\\d+)-(\\d+)', 2);

-- URL解析函数:parse_url 注意要想一次解析出多个 可以使用parse_url_tuple这个UDTF函数
select parse_url('http://www.itcast.cn/path/p1.php?query=1', 'HOST');

-- json解析函数:get_json_object
-- 空格字符串函数:space(n) 返回指定个数空格
select space(4);

-- 重复字符串函数:repeat(str, n) 重复str字符串n次
select repeat("angela",2);

-- 首字符ascii函数:ascii
select ascii("angela");  --a对应ASCII 97

-- 左补足函数:lpad
select lpad('hi', 5, '??');  --???hi
select lpad('hi', 1, '??');  --h

-- 右补足函数:rpad
select rpad('hi', 5, '??');

-- 分割字符串函数: split(str, regex)
select split('apache hive', '\\s+');

-- 集合查找函数: find_in_set(str,str_array)
select find_in_set('a','abc,b,ab,c,def');

Date Functions 日期函数

主要针对时间、日期数据类型进行操作,比如下面这些:

  • 获取当前日期: current_date
  • 获取当前时间戳: current_timestamp
  • UNIX时间戳转日期函数: from_unixtime
  • 获取当前UNIX时间戳函数: unix_timestamp
  • 日期转UNIX时间戳函数: unix_timestamp
  • 指定格式日期转UNIX时间戳函数: unix_timestamp
  • 抽取日期函数: to_date
  • 日期转年函数: year
  • 日期转月函数: month
  • 日期转天函数: day
  • 日期转小时函数: hour
  • 日期转分钟函数: minute
  • 日期转秒函数: second
  • 日期转周函数: weekofyear
  • 日期比较函数: datediff
  • 日期增加函数: date_add
  • 日期减少函数: date_sub
-- 获取当前日期: current_date
select current_date();

-- 获取当前时间戳: current_timestamp
-- 同一查询中对current_timestamp的所有调用均返回相同的值。
select current_timestamp();

-- 获取当前UNIX时间戳函数: unix_timestamp
select unix_timestamp();

-- UNIX时间戳转日期函数: from_unixtime
select from_unixtime(1618238391);
select from_unixtime(0, 'yyyy-MM-dd HH:mm:ss');

-- 日期转UNIX时间戳函数: unix_timestamp
select unix_timestamp("2011-12-07 13:01:03");

-- 指定格式日期转UNIX时间戳函数: unix_timestamp
select unix_timestamp('20111207 13:01:03','yyyyMMdd HH:mm:ss');

-- 抽取日期函数: to_date
select to_date('2009-07-30 04:17:52');

-- 日期转年函数: year
select year('2009-07-30 04:17:52');

-- 日期转月函数: month
select month('2009-07-30 04:17:52');

-- 日期转天函数: day
select day('2009-07-30 04:17:52');

-- 日期转小时函数: hour
select hour('2009-07-30 04:17:52');

-- 日期转分钟函数: minute
select minute('2009-07-30 04:17:52');

-- 日期转秒函数: second
select second('2009-07-30 04:17:52');

-- 日期转周函数: weekofyear 返回指定日期所示年份第几周
select weekofyear('2009-07-30 04:17:52');

-- 日期比较函数: datediff  日期格式要求'yyyy-MM-dd HH:mm:ss' or 'yyyy-MM-dd'
select datediff('2012-12-08','2012-05-09');

-- 日期增加函数: date_add
select date_add('2012-02-28',10);

-- 日期减少函数: date_sub
select date_sub('2012-01-1',10);

Mathematical Functions 数学函数

主要针对数值类型的数据进行数学计算,比如下面这些:

  • 取整函数: round
  • 指定精度取整函数: round
  • 向下取整函数: floor
  • 向上取整函数: ceil
  • 取随机数函数: rand
  • 二进制函数: bin
  • 进制转换函数: conv
  • 绝对值函数: abs
-- 取整函数: round  返回double类型的整数值部分 (遵循四舍五入)
select round(3.1415926);

-- 指定精度取整函数: round(double a, int d) 返回指定精度d的double类型
select round(3.1415926,4);

-- 向下取整函数: floor
select floor(3.1415926);
select floor(-3.1415926);

-- 向上取整函数: ceil
select ceil(3.1415926);
select ceil(-3.1415926);

-- 取随机数函数: rand 每次执行都不一样 返回一个0到1范围内的随机数
select rand();

-- 指定种子取随机数函数: rand(int seed) 得到一个稳定的随机数序列
select rand(2);

-- 二进制函数:  bin(BIGINT a)
select bin(18);

-- 进制转换函数: conv(BIGINT num, int from_base, int to_base)
select conv(17,10,16);

-- 绝对值函数: abs
select abs(-3.9);

Collection Functions 集合函数

主要针对集合这样的复杂数据类型进行操作,比如下面这些:

  • 集合元素size函数: size(Map<K.V>) size(Array)
  • 取map集合keys函数: map_keys(Map<K.V>)
  • 取map集合values函数: map_values(Map<K.V>)
  • 判断数组是否包含指定元素: array_contains(Array, value)
  • 数组排序函数:sort_array(Array)
-- 集合元素size函数: size(Map<K.V>) size(Array<T>)
select size(`array`(11,22,33));
select size(`map`("id",10086,"name","zhangsan","age",18));

-- 取map集合keys函数: map_keys(Map<K.V>)
select map_keys(`map`("id",10086,"name","zhangsan","age",18));

-- 取map集合values函数: map_values(Map<K.V>)
select map_values(`map`("id",10086,"name","zhangsan","age",18));

-- 判断数组是否包含指定元素: array_contains(Array<T>, value)
select array_contains(`array`(11,22,33),11);
select array_contains(`array`(11,22,33),66);

-- 数组排序函数:sort_array(Array<T>)
select sort_array(`array`(12,2,32));

Conditional Functions 条件函数

主要用于条件判断、逻辑判断转换这样的场合,比如:

-if条件判断: if(boolean testCondition, T valueTrue, T valueFalseOrNull)

  • 空判断函数: isnull( a )
  • 非空判断函数: isnotnull ( a )
  • 空值转换函数: nvl(T value, T default_value)
  • 非空查找函数: COALESCE(T v1, T v2, ...)
  • 条件转换函数: CASE a WHEN b THEN c [WHEN d THEN e]* [ELSE f] END
  • nullif( a, b ): 如果a = b,则返回NULL;否则返回NULL。否则返回一个
  • assert_true: 如果'condition'不为真,则引发异常,否则返回null
-- 使用之前课程创建好的student表数据
select * from student limit 3;

-- if条件判断: if(boolean testCondition, T valueTrue, T valueFalseOrNull)
select if(1=2,100,200);
select if(sex ='男','M','W') from student limit 3;

-- 空判断函数: isnull( a )
select isnull("allen");
select isnull(null);

-- 非空判断函数: isnotnull ( a )
select isnotnull("allen");
select isnotnull(null);

-- 空值转换函数: nvl(T value, T default_value)
select nvl("allen","itcast");
select nvl(null,"itcast");

-- 非空查找函数: COALESCE(T v1, T v2, ...)
-- 返回参数中的第一个非空值;如果所有值都为NULL,那么返回NULL
select COALESCE(null,11,22,33);
select COALESCE(null,null,null,33);
select COALESCE(null,null,null);

-- 条件转换函数: CASE a WHEN b THEN c [WHEN d THEN e]* [ELSE f] END
select case 100 when 50 then 'tom' when 100 then 'mary' else 'tim' end;
select case sex when '男' then 'man' else 'women' end from student limit 3;

-- nullif( a, b ):
-- 果a = b,则返回NULL;否则返回NULL。否则返回一个
select nullif(11,11);
select nullif(11,12);

-- assert_true(condition)
-- 如果'condition'不为真,则引发异常,否则返回null
SELECT assert_true(11 >= 0);
SELECT assert_true(-1 >= 0);

Type Conversion Functions 类型转换函数

主要用于显式的数据类型转换,有下面两种函数:

  • 任意数据类型之间转换:cast
-- 任意数据类型之间转换:cast
select cast(12.14 as bigint);
select cast(12.14 as string);

Data Masking Functions 数据脱敏函数

主要完成对数据脱敏转换功能,屏蔽原始数据,主要如下:

  • mask
  • mask_first_n(string str[, int n]
  • mask_last_n(string str[, int n])
  • mask_show_first_n(string str[, int n])
  • mask_show_last_n(string str[, int n])
  • mask_hash(string|char|varchar str)
-- mask
-- 将查询回的数据,大写字母转换为X,小写字母转换为x,数字转换为n。
select mask("abc123DEF");
select mask("abc123DEF",'-','.','^'); --自定义替换的字母

-- mask_first_n(string str[, int n]
-- 对前n个进行脱敏替换
select mask_first_n("abc123DEF",4);

-- mask_last_n(string str[, int n])
select mask_last_n("abc123DEF",4);

-- mask_show_first_n(string str[, int n])
--  除了前n个字符,其余进行掩码处理
select mask_show_first_n("abc123DEF",4);

-- mask_show_last_n(string str[, int n])
select mask_show_last_n("abc123DEF",4);

-- mask_hash(string|char|varchar str)
-- 返回字符串的hash编码。
select mask_hash("abc123DEF");

Misc. Functions 其他杂项函数

  • hive调用java方法: java_method(class, method[, arg1[, arg2..]])
  • 反射函数: reflect(class, method[, arg1[, arg2..]])
  • 取哈希值函数:hash
  • current_user()、logged_in_user()、current_database()、version()
  • SHA-1加密: sha1(string/binary)
  • SHA-2家族算法加密:sha2(string/binary, int) (SHA-224, SHA-256, SHA-384, SHA-512)
  • crc32加密:
  • MD5加密: md5(string/binary)
-- hive调用java方法: java_method(class, method[, arg1[, arg2..]])
select java_method("java.lang.Math","max",11,22);

-- 反射函数: reflect(class, method[, arg1[, arg2..]])
select reflect("java.lang.Math","max",11,22);

-- 取哈希值函数:hash
select hash("allen");

-- current_user()、logged_in_user()、current_database()、version()

-- SHA-1加密: sha1(string/binary)
select sha1("allen");

-- SHA-2家族算法加密:sha2(string/binary, int)  (SHA-224, SHA-256, SHA-384, SHA-512)
select sha2("allen",224);
select sha2("allen",512);

-- crc32加密:
select crc32("allen");

-- MD5加密: md5(string/binary)
select md5("allen");

用户自定义函数分类

虽然说Hive内置了很多函数,但是不见得一定可以满足于用户各种各样的分析需求场景。为了解决这个问题,Hive推出来用户自定义函数功能,让用户实现自己希望实现的功能函数。

用户自定义函数简称UDF,源自于英文user-defined function。自定义函数总共有3类,是根据函数输入输出的行数来区分的,分别是:

  • UDF(User-Defined-Function)普通函数,一进一出
  • UDAF(User-Defined Aggregation Function)聚合函数,多进一出
  • UDTF(User-Defined Table-Generating Functions)表生成函数,一进多出

UDF分类标准扩大化

虽然说UDF叫做用户自定义函数,其分类标准主要针对的是用户编写开发的函数。

但是这套UDF分类标准可以扩大到Hive的所有函数中包括内置函数和自定义函数。因为不管是什么类型的行数,一定满足于输入输出的要求,那么从输入几行和输出几行上来划分没有任何毛病。千万不要被UD(User-Defined)这两个字母所迷惑,照成视野的狭隘。

比如Hive官方文档中,针对聚合函数的标准就是内置的UDAF类型。

img

UDF 普通函数

UDF函数通常把它叫做普通函数,最大的特点是一进一出,也就是输入一行输出一行。比如round这样的取整函数,接收一行数据,输出的还是一行数据。

img

UDAF 聚合函数

UDAF函数通常把它叫做聚合函数,A所代表的单词就是Aggregation聚合的意思。最大的特点是多进一出,也就是输入多行输出一行。比如count、sum这样的函数。

img

  • count:统计检索到的总行数。
  • sum:求和
  • avg:求平均
  • min:最小值
  • max:最大值
  • 数据收集函数(去重): collect_set(col)
  • 数据收集函数(不去重): collect_list(col)
select sex from student;
select collect_set(sex) from student;
select collect_list(sex) from student;

img

UDTF 表生成函数

UDTF函数通常把它叫做表生成函数,T所代表的单词是Table-Generating表生成的意思。最大的特点是一进多出,也就是输入一行输出多行。

之所以叫做表生成函数,原因在于这类型的函数作用返回的结果类似于表(多行数据嘛),同时,UDTF函数也是我们接触比较少的函数,陌生。比如explode函数。
img

2.3 案例:用户自定义UDF

需求描述

在企业中处理数据的时候,对于敏感数据往往需要进行脱敏处理。比如手机号。我们常见的处理方式是将手机号中间4位进行处理。
Hive中没有这样的函数可以直接实现功能,虽然可以通过各种函数的嵌套调用最终也能实现,但是效率不高,现要求自定义开发实现Hive函数,满足上述需求。
1、能够对输入数据进行非空判断、位数判断处理
2、能够实现校验手机号格式,把满足规则的进行
处理
3、对于不符合手机号规则的数据原封不动不处理

实现步骤

通过业务分析,可以发现我们需要实现的函数是一个输入一行输出一行的函数,也就是所说的UDF普通函数。
根据Hive当中的UDF开发规范,实现步骤如下:
1、写一个java类,继承UDF,并重载evaluate方法;
2、程序打成jar包,上传服务器添加到hive的classpath;
hive>add JAR /home/hadoop/udf.jar;
3、注册成为临时函数(给UDF命名);
create temporary function 函数名 as 'UDF类全路径';
4、使用函数

代码实现

开发环境准备

<dependencies>
    <dependency>
        <groupId>org.apache.hive</groupId>
        <artifactId>hive-exec</artifactId>
        <version>3.1.2</version>
    </dependency>
    <dependency>
        <groupId>org.apache.hadoop</groupId>
        <artifactId>hadoop-common</artifactId>
        <version>3.1.4</version>
    </dependency>
</dependencies>
<build>
    <plugins>
        <plugin>
            <groupId>org.apache.maven.plugins</groupId>
            <artifactId>maven-shade-plugin</artifactId>
            <version>2.2</version>
            <executions>
                <execution>
                    <phase>package</phase>
                    <goals>
                        <goal>shade</goal>
                    </goals>
                    <configuration>
                        <filters>
                            <filter>
                                <artifact>*:*</artifact>
                                <excludes>
                                    <exclude>META-INF/*.SF</exclude>
                                    <exclude>META-INF/*.DSA</exclude>
                                    <exclude>META-INF/*.RSA</exclude>
                                </excludes>
                            </filter>
                        </filters>
                    </configuration>
                </execution>
            </executions>
        </plugin>
    </plugins>
</build>

业务代码

package cn.itcast.hive.udf;

import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.hive.ql.exec.UDF;

import java.util.regex.Matcher;
import java.util.regex.Pattern;

/**
 * @description: hive自定义函数UDF 实现对手机号中间4位进行****加密
 * @author: Itcast
 */
public class EncryptPhoneNumber extends UDF {
    /**
     * 重载evaluate方法 实现函数的业务逻辑
     * @param phoNum  入参:未加密手机号
     * @return 返回:加密后的手机号字符串
     */
    public String evaluate(String phoNum){
        String encryptPhoNum = null;
        //手机号不为空 并且为11位
        if (StringUtils.isNotEmpty(phoNum) && phoNum.trim().length() == 11 ) {
            //判断数据是否满足中国大陆手机号码规范
            String regex = "^(1[3-9]\\d{9}$)";
            Pattern p = Pattern.compile(regex);
            Matcher m = p.matcher(phoNum);
            if (m.matches()) {//进入这里都是符合手机号规则的
                //使用正则替换 返回加密后数据
                encryptPhoNum = phoNum.trim().replaceAll("()\\d{4}(\\d{4})","$1****$2");
            }else{
                //不符合手机号规则 数据直接原封不动返回
                encryptPhoNum = phoNum;
            }
        }else{
            //不符合11位 数据直接原封不动返回
            encryptPhoNum = phoNum;
        }
        return encryptPhoNum;
    }
}

部署实测

打jar包上传服务器

img

img

把jar包上传到Hiveserver2服务运行所在机器的linux系统,或者HDFS文件系统。
img

添加至Hive Classpath

在客户端中使用命令把jar包添加至classpath。

img

注册临时函数

img

功能效果演示 img

三、Hive函数高阶

3.1 UDTF之explode函数

explode语法功能

对于UDTF表生成函数,很多人难以理解什么叫做输入一行,输出多行。

为什么叫做表生成?能够产生表吗?下面我们就来学习Hive当做内置的一个非常著名的UDTF函数,名字叫做explode函数,中文戏称之为“爆炸函数”,可以炸开数据。

explode函数接收map或者array类型的数据作为参数,然后把参数中的每个元素炸开变成一行数据。一个元素一行。这样的效果正好满足于输入一行输出多行。

explode函数在关系型数据库中本身是不该出现的。

因为他的出现本身就是在操作不满足第一范式的数据(每个属性都不可再分)。本身已经违背了数据库的设计原理,但是在面向分析的数据库或者数据仓库中,这些规范可以发生改变。

explode(a) - separates the elements of array a into multiple rows, or the elements of a map into multiple rows and columns

img

  • explode(array)将array列表里的每个元素生成一行;
  • explode(map)将map里的每一对元素作为一行,其中key为一列,value为一列;

一般情况下,explode函数可以直接使用即可,也可以根据需要结合lateral view侧视图使用

explode函数的使用

select explode(`array`(11,22,33)) as item;

select explode(`map`("id",10086,"name","zhangsan","age",18));

img

案例:NBA总冠军球队名单

业务需求

有一份数据《The_NBA_Championship.txt》,关于部分年份的NBA总冠军球队名单:
img

第一个字段表示的是球队名称,第二个字段是获取总冠军的年份,字段之间以,分割

获取总冠军年份之间以|进行分割

需求:使用Hive建表映射成功数据,对数据拆分,要求拆分之后数据如下所示:
img

并且最好根据年份的倒序进行排序。

代码实现

-- step1:建表
create table the_nba_championship(
    team_name string,
    champion_year array<string>
) row format delimited
fields terminated by ','
collection items terminated by '|';

-- step2:加载数据文件到表中
load data local inpath '/opt/module/hive/The_NBA_Championship.txt' into table the_nba_championship;

-- step3:验证
select *
from the_nba_championship;

img

下面使用explode函数:

-- step4:使用explode函数对champion_year进行拆分 俗称炸开
select explode(champion_year) from the_nba_championship;

select team_name,explode(champion_year) from the_nba_championship;

img

explode使用限制

在select条件中,如果只有explode函数表达式,程序执行是没有任何问题的;

但是如果在select条件中,包含explode和其他字段,就会报错。错误信息为:

org.apache.hadoop.hive.ql.parse.SemanticException:UDTF's are not supported outside the SELECT clause, nor nested in expressions
那么如何理解这个错误呢?为什么在select的时候,explode的旁边不支持其他字段的同时出现?

explode语法限制原因

  • explode函数属于UDTF函数,即表生成函数
  • explode函数执行返回的结果可以理解为一张虚拟的表,其数据来源于源表;
  • 在select中只查询源表数据没有问题,只查询explode生成的虚拟表数据也没问题
  • 但是不能在只查询源表的时候,既想返回源表字段又想返回explode生成的虚拟表字段
  • 通俗点讲,有两张表,不能只查询一张表但是返回分别属于两张表的字段;
  • 从SQL层面上来说应该对两张表进行关联查询
  • Hive专门提供了语法lateral View侧视图,专门用于搭配explode这样的UDTF函数,以满足上述需要。

img

3.2 Lateral View侧视图

概念

Lateral View是一种特殊的语法,主要用于搭配UDTF类型功能的函数一起使用,用于解决UDTF函数的一些查询限制的问题。

侧视图的原理是将UDTF的结果构建成一个类似于视图的表,然后将原表中的每一行和UDTF函数输出的每一行进行连接,生成一张新的虚拟表。这样就避免了UDTF的使用限制问题。使用lateral view时也可以对UDTF产生的记录设置字段名称,产生的字段可以用于group by、order by 、limit等语句中,不需要再单独嵌套一层子查询。

一般只要使用UDTF,就会固定搭配lateral view使用。

官方链接:https://cwiki.apache.org/confluence/display/Hive/LanguageManual+LateralView

UDTF配合侧视图使用

针对上述NBA冠军球队年份排名案例,使用explode函数+lateral view侧视图,可以完美解决:

-- lateral view侧视图基本语法如下
select …… from tabelA lateral view UDTF(xxx) 别名 as col1,col2,col3……;

select a.team_name ,b.year
from the_nba_championship a lateral view explode(champion_year) b as year

-- 根据年份倒序排序
select a.team_name ,b.year
from the_nba_championship a lateral view explode(champion_year) b as year
order by b.year desc;

lateral_view

3.3 Aggregation 聚合函数

基础聚合

HQL提供了几种内置的UDAF聚合函数,例如max(...)min(...)avg(...)。这些我们把它称之为基础的聚合函数。

通常情况下,聚合函数会与GROUP BY子句一起使用。 如果未指定GROUP BY子句,默认情况下,它会汇总所有行数据。

--------------基础聚合函数-------------------
-- 1、测试数据准备
drop table if exists student;
create table student(
    num int,
    name string,
    sex string,
    age int,
    dept string)
row format delimited
fields terminated by ',';
-- 加载数据
load data local inpath '/root/hivedata/students.txt' into table student;
-- 验证
select * from student;


-- 场景1:没有group by子句的聚合操作
select count(*) as cnt1,count(1) as cnt2 from student; --两个一样

-- 场景2:带有group by子句的聚合操作 注意group by语法限制
select sex,count(*) as cnt from student group by sex;

-- 场景3:select时多个聚合函数一起使用
select count(*) as cnt1,avg(age) as cnt2 from student;

-- 场景4:聚合函数和case when条件转换函数、coalesce函数、if函数使用
select
    sum(CASE WHEN sex = '男'THEN 1 ELSE 0 END)
from student;

select
    sum(if(sex = '男',1,0))
from student;

-- 场景5:聚合参数不支持嵌套聚合函数
select avg(count(*))  from student;

--聚合参数针对null的处理方式
--null null 0
select max(null), min(null), count(null);
-- 下面这两个不支持null
select sum(null), avg(null);

-- 场景5:聚合操作时针对null的处理
CREATE TABLE tmp_1 (val1 int, val2 int);
INSERT INTO TABLE tmp_1 VALUES (1, 2),(null,2),(2,3);
select * from tmp_1;
-- 第二行数据(NULL, 2) 在进行sum(val1 + val2)的时候会被忽略
select sum(val1), sum(val1 + val2) from tmp_1;
-- 可以使用coalesce函数解决
select
    sum(coalesce(val1,0)),
    sum(coalesce(val1,0) + val2)
from tmp_1;

-- 场景6:配合distinct关键字去重聚合
-- 此场景下,会编译期间会自动设置只启动一个reduce task处理数据  性能可能会不会 造成数据拥堵
select count(distinct sex) as cnt1 from student;
-- 可以先去重 在聚合 通过子查询完成
-- 因为先执行distinct的时候 可以使用多个reducetask来跑数据
select count(*) as gender_uni_cnt
from (select distinct sex from student) a;

-- 案例需求:找出student中男女学生年龄最大的及其名字
-- 这里使用了struct来构造数据 然后针对struct应用max找出最大元素 然后取值
select sex,
max(struct(age, name)).col1 as age,
max(struct(age, name)).col2 as name
from student
group by sex;

select struct(age, name) from student;
select struct(age, name).col1 from student;
select max(struct(age, name)) from student;

增强聚合

概述与表数据环境准备

增强聚合的grouping_sets、cube、rollup这几个函数主要适用于OLAP多维数据分析模式中,多维分析中的指的分析问题时看待问题的维度、角度

下面我们来准备一下数据,通过案例更好的理解函数的功能含义
字段:月份、天、用户cookieid

*img
*

-- 表创建并且加载数据
CREATE TABLE cookie_info(
   month STRING,
   day STRING,
   cookieid STRING
) ROW FORMAT DELIMITED
FIELDS TERMINATED BY ',';

load data local inpath '/root/hivedata/cookie_info.txt' into table cookie_info;

select * from cookie_info;

image-20221108151108688

Grouping sets

grouping sets是一种将多个group by逻辑写在一个sql语句中的便利写法

等价于将不同维度的GROUP BY结果集进行UNION ALL。

GROUPING__ID表示结果属于哪一个分组集合。

--- group sets---------
SELECT
    month,
    day,
    COUNT(DISTINCT cookieid) AS nums,
    GROUPING__ID
FROM cookie_info
GROUP BY month,day
GROUPING SETS (month,day)
ORDER BY GROUPING__ID;

-- grouping_id表示这一组结果属于哪个分组集合,
-- 根据grouping sets中的分组条件month,day,1是代表month,2是代表day

-- 等价于
SELECT month,NULL,COUNT(DISTINCT cookieid) AS nums,1 AS GROUPING__ID FROM cookie_info GROUP BY month
UNION ALL
SELECT NULL as month,day,COUNT(DISTINCT cookieid) AS nums,2 AS GROUPING__ID FROM cookie_info GROUP BY day;

image-20221108151226794

-- 再比如
SELECT
    month,
    day,
    COUNT(DISTINCT cookieid) AS nums,
    GROUPING__ID
FROM cookie_info
GROUP BY month,day
GROUPING SETS (month,day,(month,day))
ORDER BY GROUPING__ID;

-- 等价于
SELECT month,NULL,COUNT(DISTINCT cookieid) AS nums,1 AS GROUPING__ID FROM cookie_info GROUP BY month
UNION ALL
SELECT NULL,day,COUNT(DISTINCT cookieid) AS nums,2 AS GROUPING__ID FROM cookie_info GROUP BY day
UNION ALL
SELECT month,day,COUNT(DISTINCT cookieid) AS nums,3 AS GROUPING__ID FROM cookie_info GROUP BY month,day;

image-20221108151307745

Cube

cube的语法功能指的是:根据GROUP BY的维度的所有组合进行聚合

对于cube,如果有n个维度,则所有组合的总个数是:2^n

比如Cube有a,b,c3个维度,则所有组合情况是:
((a,b,c),(a,b),(b,c),(a,c),(a),(b),(c),())。

------ cube ---------------
SELECT
    month,
    day,
    COUNT(DISTINCT cookieid) AS nums,
    GROUPING__ID
FROM cookie_info
GROUP BY month,day
WITH CUBE
ORDER BY GROUPING__ID;

-- 等价于
SELECT NULL,NULL,COUNT(DISTINCT cookieid) AS nums,0 AS GROUPING__ID FROM cookie_info
UNION ALL
SELECT month,NULL,COUNT(DISTINCT cookieid) AS nums,1 AS GROUPING__ID FROM cookie_info GROUP BY month
UNION ALL
SELECT NULL,day,COUNT(DISTINCT cookieid) AS nums,2 AS GROUPING__ID FROM cookie_info GROUP BY day
UNION ALL
SELECT month,day,COUNT(DISTINCT cookieid) AS nums,3 AS GROUPING__ID FROM cookie_info GROUP BY month,day;

image-20221108151501779

Rollup

cube的语法功能指的是:根据GROUP BY的维度的所有组合进行聚合。

rollup是Cube的子集,以最左侧的维度为主,从该维度进行层级聚合。

比如ROLLUP有a,b,c3个维度,则所有组合情况是:
((a,b,c),(a,b),(a),())。

-- rollup-------------
-- 比如,以month维度进行层级聚合:
SELECT
    month,
    day,
    COUNT(DISTINCT cookieid) AS nums,
    GROUPING__ID
FROM cookie_info
GROUP BY month,day
WITH ROLLUP
ORDER BY GROUPING__ID;

image-20221108151553403

-- 把month和day调换顺序,则以day维度进行层级聚合:
SELECT
    day,
    month,
    COUNT(DISTINCT cookieid) AS uv,
    GROUPING__ID
FROM cookie_info
GROUP BY day,month
WITH ROLLUP
ORDER BY GROUPING__ID;

image-20221108151643008

3.4 Window functions 窗口函数

窗口函数概述

窗口函数(Window functions)是一种SQL函数,非常适合于数据分析,因此也叫做OLAP函数,其最大特点是:输入值是从SELECT语句的结果集中的一行或多行的“窗口”中获取的。你也可以理解为窗口有大有小(行有多有少)。

通过OVER子句,窗口函数与其他SQL函数有所区别。如果函数具有OVER子句,则它是窗口函数。如果它缺少OVER子句,则它是一个普通的聚合函数。

窗口函数可以简单地解释为类似于聚合函数的计算函数,但是通过GROUP BY子句组合的常规聚合会隐藏正在聚合的各个行,最终输出一行,窗口函数聚合后还可以访问当中的各个行,并且可以将这些行中的某些属性添加到结果集中。

img
为了更加直观感受窗口函数,我们通过sum聚合函数进行普通常规聚合和窗口聚合,一看效果。

---- sum+group by普通常规聚合操作------------
select sum(salary) as total from employee group by dept;

img

img

---- sum+窗口函数聚合操作------------
select id,name,deg,salary,dept,sum(salary) over(partition by dept) as total from employee;

img

窗口函数语法

Function(arg1,..., argn) OVER ([PARTITION BY <...>] [ORDER BY <....>] [<window_expression>])

-- 其中Function(arg1,..., argn) 可以是下面分类中的任意一个
    -- 聚合函数:比如sum max avg等
    -- 排序函数:比如rank row_number等
    -- 分析函数:比如lead lag first_value等

-- OVER [PARTITION BY <...>] 类似于group by 用于指定分组  每个分组你可以把它叫做窗口
-- 如果没有PARTITION BY 那么整张表的所有行就是一组

-- [ORDER BY <....>]  用于指定每个分组内的数据排序规则 支持ASC、DESC

-- [<window_expression>] 用于指定每个窗口中 操作的数据范围 默认是窗口中所有行

案例:网站用户页面浏览次数分析

在网站访问中,经常使用cookie来标识不同的用户身份,通过cookie可以追踪不同用户的页面访问情况,有下面两份数据:

字段含义:cookieid 、访问时间、pv数(页面浏览数)
img

字段含义:cookieid、访问时间、访问页面url

img

在Hive中创建两张表表,把数据加载进去用于窗口分析。

--- 建表并且加载数据
create table website_pv_info(
   cookieid string,
   createtime string,   --day
   pv int
) row format delimited
fields terminated by ',';

create table website_url_info (
    cookieid string,
    createtime string,  -- 访问时间
    url string       -- 访问页面
) row format delimited
fields terminated by ',';

load data local inpath '/root/hivedata/website_pv_info.txt' into table website_pv_info;
load data local inpath '/root/hivedata/website_url_info.txt' into table website_url_info;

select * from website_pv_info;
select * from website_url_info;

窗口聚合函数

从Hive v2.2.0开始,支持DISTINCT与窗口函数中的聚合函数一起使用。

这里以sum()函数为例,其他聚合函数使用类似。

-----窗口聚合函数的使用-----------
-- 1、求出每个用户总pv数  sum+group by普通常规聚合操作
select cookieid,sum(pv) as total_pv from website_pv_info group by cookieid;

image-20221108152617466

-- 2、sum+窗口函数 总共有四种用法 注意是整体聚合 还是累积聚合
-- sum(...) over( )对表所有行求和
-- sum(...) over( order by ... ) 连续累积求和
-- sum(...) over( partition by... ) 同组内所有行求和
-- sum(...) over( partition by... order by ... ) 在每个分组内,连续累积求和

-- 需求:求出网站总的pv数 所有用户所有访问加起来
-- sum(...) over( )对表所有行求和
select cookieid,createtime,pv,
       sum(pv) over() as total_pv
from website_pv_info;

image-20221108152742548

-- 需求:求出每个用户总pv数
-- sum(...) over( partition by... ),同组内所行求和
select cookieid,createtime,pv,
       sum(pv) over(partition by cookieid) as total_pv
from website_pv_info;

img

-- 需求:求出每个用户截止到当天,累积的总pv数
-- sum(...) over( partition by... order by ... ),在每个分组内,连续累积求和
select cookieid,createtime,pv,
       sum(pv) over(partition by cookieid order by createtime) as current_total_pv
from website_pv_info;

img

窗口表达式

我们知道,在sum(...) over( partition by... order by ... )语法完整的情况下,进行的累积聚合操作,默认累积聚合行为是:从第一行聚合到当前行
Window expression窗口表达式给我们提供了一种控制行范围的能力,比如向前2行,向后3行。
语法如下:
关键字是rows between,包括下面这几个选项

  • preceding:往前
  • following:往后
  • current row:当前行
  • unbounded:边界
  • unbounded preceding 表示从前面的起点
  • unbounded following:表示到后面的终点
--- 窗口表达式
-- 第一行到当前行
select cookieid,createtime,pv,
       sum(pv) over(partition by cookieid order by createtime rows between unbounded preceding and current row) as pv2
from website_pv_info;

image-20221108154059233

-- 向前3行至当前行
select cookieid,createtime,pv,
       sum(pv) over(partition by cookieid order by createtime rows between 3 preceding and current row) as pv4
from website_pv_info;

image-20221108154205085

-- 向前3行 向后1行
select cookieid,createtime,pv,
       sum(pv) over(partition by cookieid order by createtime rows between 3 preceding and 1 following) as pv5
from website_pv_info;

image-20221108154242034

-- 当前行至最后一行
select cookieid,createtime,pv,
       sum(pv) over(partition by cookieid order by createtime rows between current row and unbounded following) as pv6
from website_pv_info;

image-20221108154315053

-- 第一行到最后一行 也就是分组内的所有行
select cookieid,createtime,pv,
       sum(pv) over(partition by cookieid order by createtime rows between unbounded preceding  and unbounded following) as pv6
from website_pv_info;

image-20221108154757813

窗口排序函数

窗口排序函数用于给每个分组内的数据打上排序的标号。注意窗口排序函数不支持窗口表达式。总共有4个函数需要掌握:

  • row_number:在每个分组中,为每行分配一个从1开始的唯一序列号,递增,不考虑重复;
  • rank: 在每个分组中,为每行分配一个从1开始的序列号,考虑重复,挤占后续位置;
  • dense_rank: 在每个分组中,为每行分配一个从1开始的序列号,考虑重复,不挤占后续位置;
-----窗口排序函数
SELECT
    cookieid,
    createtime,
    pv,
    RANK() OVER(PARTITION BY cookieid ORDER BY pv desc) AS rn1, -- 考虑重复,挤占后续位置
    DENSE_RANK() OVER(PARTITION BY cookieid ORDER BY pv desc) AS rn2, -- 考虑重复,不挤占后续位置
    ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY pv DESC) AS rn3 -- 递增,不考虑重复
FROM website_pv_info
WHERE cookieid = 'cookie1';

img

上述这三个函数用于分组TopN的场景非常适合。

-- 需求:找出每个用户访问pv最多的Top3 重复并列的不考虑
SELECT * from(
    SELECT cookieid, createtime, pv,
    ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY pv DESC) AS seq
FROM website_pv_info) tmp where tmp.seq <4;

img

还有一个函数,叫做ntile函数,其功能为:将每个分组内的数据分为指定的若干个桶里(分为若干个部分),并且为每一个桶分配一个桶编号。

如果不能平均分配,则优先分配较小编号的桶,并且各个桶中能放的行数最多相差1。

有时会有这样的需求:如果数据排序后分为三部分,业务人员只关心其中的一部分,如何将这中间的三分之一数据拿出来呢?NTILE函数即可以满足。

-- 把每个分组内的数据分为3桶
SELECT
    cookieid,
    createtime,
    pv,
    NTILE(3) OVER(PARTITION BY cookieid ORDER BY createtime) AS rn2
FROM website_pv_info
ORDER BY cookieid,createtime;

img

-- 需求:统计每个用户pv数最多的前3分之1天。
-- 理解:将数据根据cookieid分 根据pv倒序排序 排序之后分为3个部分 取第一部分
SELECT * from(
    SELECT cookieid,createtime,pv,
     NTILE(3) OVER(PARTITION BY cookieid ORDER BY pv DESC) AS rn
 FROM website_pv_info) tmp where rn =1;

img

窗口分析函数

SELECT *
FROM website_url_info;

image-20221108160119052

LAG(col,n,DEFAULT) 用于统计窗口内往上第n行值

第一个参数为列名,第二个参数为往上第n行(可选,默认为1),第三个参数为默认值(当往上第n行为NULL时候,取默认值,如不指定,则为NULL);

-----------窗口分析函数----------
-- LAG
SELECT cookieid,
       createtime,
       url,
       ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn,
       LAG(createtime,1,'1970-01-01 00:00:00') OVER(PARTITION BY cookieid ORDER BY createtime) AS last_1_time,
       LAG(createtime,2) OVER(PARTITION BY cookieid ORDER BY createtime) AS last_2_time
FROM website_url_info;

image-20221108160357150

LEAD(col,n,DEFAULT) 用于统计窗口内往下第n行值

第一个参数为列名,第二个参数为往下第n行(可选,默认为1),第三个参数为默认值(当往下第n行为NULL时候,取默认值,如不指定,则为NULL);

-- LEAD
SELECT cookieid,
       createtime,
       url,
       ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn,
       LEAD(createtime,1,'1970-01-01 00:00:00') OVER(PARTITION BY cookieid ORDER BY createtime) AS next_1_time,
       LEAD(createtime,2) OVER(PARTITION BY cookieid ORDER BY createtime) AS next_2_time
FROM website_url_info;

image-20221108160506545

FIRST_VALUE 取分组内排序后,截止到当前行,第一个值;

-- FIRST_VALUE
SELECT cookieid,
       createtime,
       url,
       ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn,
       FIRST_VALUE(url) OVER(PARTITION BY cookieid ORDER BY createtime) AS first1
FROM website_url_info;

image-20221108160811980

LAST_VALUE 取分组内排序后,截止到当前行,最后一个值;

-- LAST_VALUE
SELECT cookieid,
       createtime,
       url,
       ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn,
       LAST_VALUE(url) OVER(PARTITION BY cookieid ORDER BY createtime) AS last1
FROM website_url_info;

image-20221108160829693

3.5 Sampling 抽样函数

抽样概述

当数据量过大时,我们可能需要查找数据子集以加快数据处理速度分析。 这就是抽样、采样,一种用于识别和分析数据中的子集的技术,以发现整个数据集中的模式和趋势
img
在HQL中,可以通过三种方式采样数据:随机采样,存储桶表采样和块采样。

Random随机抽样

随机抽样使用rand()函数和LIMIT关键字来获取数据。 使用了DISTRIBUTE和SORT关键字,可以确保数据也随机分布在mapper和reducer之间,使得底层执行有效率。

ORDER BY 和rand()语句也可以达到相同的目的,但是表现不好。因为ORDER BY是全局排序,只会启动运行一个Reducer。

-- 数据表
select * from student;

-- 需求:随机抽取2个学生的情况进行查看
SELECT * FROM student
DISTRIBUTE BY rand() SORT BY rand() LIMIT 2;

-- 使用order by+rand也可以实现同样的效果 但是效率不高
SELECT * FROM student
ORDER BY rand() LIMIT 2;

img

Block块抽样

Block块采样允许select随机获取n行数据,即数据大小或n个字节的数据。
采样粒度是HDFS块大小

--- block抽样
-- 根据行数抽样
SELECT * FROM student TABLESAMPLE(1 ROWS);

-- 根据数据大小百分比抽样
SELECT * FROM student TABLESAMPLE(50 PERCENT);

-- 根据数据大小抽样
-- 支持数据单位 b/B, k/K, m/M, g/G
SELECT * FROM student TABLESAMPLE(1k);

Bucket table分桶表抽样

这是一种特殊的采样方法,针对分桶表进行了优化。

--- bucket table抽样
-- 根据整行数据进行抽样
SELECT * FROM t_usa_covid19_bucket TABLESAMPLE(BUCKET 1 OUT OF 2 ON rand());

-- 根据分桶字段进行抽样 效率更高
describe formatted t_usa_covid19_bucket;
SELECT * FROM t_usa_covid19_bucket TABLESAMPLE(BUCKET 1 OUT OF 2 ON state);
posted @ 2022-01-12 14:34  王陸  阅读(699)  评论(0编辑  收藏  举报