HDU 1081 To the Max 最大子矩阵(动态规划求最大连续子序列和)
Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
Input
The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Sample Input
4 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2
Sample Output
15
该题和之前做过的求最大连续子序列和有着共通之处,不同的地方是本问题求的是一个最大连续子矩阵,维度上变成了二维,那么我们能不能考虑压缩二维空间变为一维空间呢?
其实这是可以的。可以先选中矩阵的几行,逐列相加变为一个一维数组。(如果是一行的情况,则直接使用序列的最大连续段和方法)
多行变为一行时:例如
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
当i=0, j=2时,则选择0,1,2行,逐列相加压缩为一行a,再从a中寻找最长连续子序列和
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
a: 5 1 -17 3
该问题中i和j需要遍历所有的情况,压缩所有情况为一个一维数组!!!
import java.util.*; public class test { public static void main(String[] args) { int[][] a = new int[100][100]; int[] b = new int[100]; int n; Scanner in = new Scanner(System.in); n = in.nextInt(); for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { a[i][j] = in.nextInt(); } } int ans = 0; for (int i = 0; i < n; i++) { for (int j = i; j < n; j++) { for (int k = 0; k < n; k++) { b[k] = 0; for (int l = i; l <= j; l++) { b[k] += a[l][k];//合并i到j行 } } // 动态规划 int sum = 0;//当前和 int max = 0;//最大和 //dp[i] = max(dp[i], dp[i - 1] + a[i]); for (int k = 0; k < n; k++) { sum += b[k];// 含有第k个元素的最大连续子段和 if (sum > max) { max = sum; } if (sum < 0) { sum = 0; } } if (max > ans) {//更新ans ans = max; } } } System.out.println(ans); } }