Java多线程批量操作,手动做事务控制
注:本文转自:https://mp.weixin.qq.com/s/pS8x5ewDolGRl1z7F2qKSg
项目代码基于:MySql 数据,开发框架为:SpringBoot、Mybatis
开发语言为:Java8
项目代码:https://gitee.com/john273766764/springboot-mybatis-threads
文章目录
- 前言
- 循环操作的代码
- 使用手动事务的操作代码
- 尝试多线程进行数据修改
- 基于两个CountDownLatch控制多线程事务提交
- 基于TransactionStatus集合来控制多线程事务提交
- 使用union连接多个select实现批量update
- 总结
前言
公司业务中遇到一个需求,需要同时修改最多约5万条数据,而且还不支持批量或异步修改操作。于是只能写个for循环操作,但操作耗时太长,只能一步一步寻找其他解决方案。
具体操作如下:
一、循环操作的代码
先写一个最简单的for循环代码,看看耗时情况怎么样。
/*** * 一条一条依次对50000条数据进行更新操作 * 耗时:2m27s,1m54s */ @Test void updateStudent() { List<Student> allStudents = studentMapper.getAll(); allStudents.forEach(s -> { //更新教师信息 String teacher = s.getTeacher(); String newTeacher = "TNO_" + new Random().nextInt(100); s.setTeacher(newTeacher); studentMapper.update(s); }); }
循环修改整体耗时约 1分54秒,且代码中没有手动事务控制应该是自动事务提交,所以每次操作事务都会提交所以操作比较慢,我们先对代码中添加手动事务控制,看查询效率怎样。
二、使用手动事务的操作代码
修改后的代码如下:
@Autowired private DataSourceTransactionManager dataSourceTransactionManager; @Autowired private TransactionDefinition transactionDefinition; /** * 由于希望更新操作 一次性完成,需要手动控制添加事务 * 耗时:24s * 从测试结果可以看出,添加事务后插入数据的效率有明显的提升 */ @Test void updateStudentWithTrans() { List<Student> allStudents = studentMapper.getAll(); TransactionStatus transactionStatus = dataSourceTransactionManager.getTransaction(transactionDefinition); try { allStudents.forEach(s -> { //更新教师信息 String teacher = s.getTeacher(); String newTeacher = "TNO_" + new Random().nextInt(100); s.setTeacher(newTeacher); studentMapper.update(s); }); dataSourceTransactionManager.commit(transactionStatus); } catch (Throwable e) { dataSourceTransactionManager.rollback(transactionStatus); throw e; } }
添加手动事务操控制后,整体耗时约 24秒,这相对于自动事务提交的代码,快了约5倍,对于大量循环数据库提交操作,添加手动事务可以有效提高操作效率。
三、尝试多线程进行数据修改
添加数据库手动事务后操作效率有明细提高,但还是比较长,接下来尝试多线程提交看是不是能够再快一些。
先添加一个Service将批量修改操作整合一下,具体代码如下:
StudentServiceImpl.java
@Service public class StudentServiceImpl implements StudentService { @Autowired private StudentMapper studentMapper; @Autowired private DataSourceTransactionManager dataSourceTransactionManager; @Autowired private TransactionDefinition transactionDefinition; @Override public void updateStudents(List<Student> students, CountDownLatch threadLatch) { TransactionStatus transactionStatus = dataSourceTransactionManager.getTransaction(transactionDefinition); System.out.println("子线程:" + Thread.currentThread().getName()); try { students.forEach(s -> { // 更新教师信息 // String teacher = s.getTeacher(); String newTeacher = "TNO_" + new Random().nextInt(100); s.setTeacher(newTeacher); studentMapper.update(s); }); dataSourceTransactionManager.commit(transactionStatus); threadLatch.countDown(); } catch (Throwable e) { e.printStackTrace(); dataSourceTransactionManager.rollback(transactionStatus); } } }
批量测试代码,我们采用了多线程进行提交,修改后测试代码如下:
@Autowired private DataSourceTransactionManager dataSourceTransactionManager; @Autowired private TransactionDefinition transactionDefinition; @Autowired private StudentService studentService; /** * 对用户而言,27s 任是一个较长的时间,我们尝试用多线程的方式来经行修改操作看能否加快处理速度 * 预计创建10个线程,每个线程进行5000条数据修改操作 * 耗时统计 * 1 线程数:1 耗时:25s * 2 线程数:2 耗时:14s * 3 线程数:5 耗时:15s * 4 线程数:10 耗时:15s * 5 线程数:100 耗时:15s * 6 线程数:200 耗时:15s * 7 线程数:500 耗时:17s * 8 线程数:1000 耗时:19s * 8 线程数:2000 耗时:23s * 8 线程数:5000 耗时:29s */ @Test void updateStudentWithThreads() { //查询总数据 List<Student> allStudents = studentMapper.getAll(); // 线程数量 final Integer threadCount = 100; //每个线程处理的数据量 final Integer dataPartionLength = (allStudents.size() + threadCount - 1) / threadCount; // 创建多线程处理任务 ExecutorService studentThreadPool = Executors.newFixedThreadPool(threadCount); CountDownLatch threadLatchs = new CountDownLatch(threadCount); for (int i = 0; i < threadCount; i++) { // 每个线程处理的数据 List<Student> threadDatas = allStudents.stream() .skip(i * dataPartionLength).limit(dataPartionLength).collect(Collectors.toList()); studentThreadPool.execute(() -> { studentService.updateStudents(threadDatas, threadLatchs); }); } try { // 倒计时锁设置超时时间 30s threadLatchs.await(30, TimeUnit.SECONDS); } catch (Throwable e) { e.printStackTrace(); } System.out.println("主线程完成"); }
多线程提交修改时,我们尝试了不同线程数对提交速度的影响,具体可以看下面表格,
多线程修改50000条数据时 不同线程数耗时对比(秒)
根据表格,我们线程数增大提交速度并非一直增大,在当前情况下约在2-5个线程数时,提交速度最快(实际线程数还是需要根据服务器配置实际测试)。
四、基于两个CountDownLatch控制多线程事务提交
由于多线程提交时,每个线程事务时单独的,无法保证一致性,我们尝试给多线程添加事务控制,来保证每个线程都是在插入数据完成后在提交事务,
这里我们使用两个 CountDownLatch 来控制主线程与子线程事务提交,并设置了超时时间为 30 秒。我们对代码进行了一点修改:
@Override public void updateStudentsThread(List<Student> students, CountDownLatch threadLatch, CountDownLatch mainLatch, StudentTaskError taskStatus) { TransactionStatus transactionStatus = dataSourceTransactionManager.getTransaction(transactionDefinition); System.out.println("子线程:" + Thread.currentThread().getName()); try { students.forEach(s -> { // 更新教师信息 // String teacher = s.getTeacher(); String newTeacher = "TNO_" + new Random().nextInt(100); s.setTeacher(newTeacher); studentMapper.update(s); }); } catch (Throwable e) { taskStatus.setIsError(); } finally { threadLatch.countDown(); // 切换到主线程执行 } try { mainLatch.await(); //等待主线程执行 } catch (Throwable e) { taskStatus.setIsError(); } // 判断是否有错误,如有错误 就回滚事务 if (taskStatus.getIsError()) { dataSourceTransactionManager.rollback(transactionStatus); } else { dataSourceTransactionManager.commit(transactionStatus); } }
/** * 由于每个线程都是单独的事务,需要添加对线程事务的统一控制 * 我们这边使用两个 CountDownLatch 对子线程的事务进行控制 */ @Test void updateStudentWithThreadsAndTrans() { //查询总数据 List<Student> allStudents = studentMapper.getAll(); // 线程数量 final Integer threadCount = 4; //每个线程处理的数据量 final Integer dataPartionLength = (allStudents.size() + threadCount - 1) / threadCount; // 创建多线程处理任务 ExecutorService studentThreadPool = Executors.newFixedThreadPool(threadCount); CountDownLatch threadLatchs = new CountDownLatch(threadCount); // 用于计算子线程提交数量 CountDownLatch mainLatch = new CountDownLatch(1); // 用于判断主线程是否提交 StudentTaskError taskStatus = new StudentTaskError(); // 用于判断子线程任务是否有错误 for (int i = 0; i < threadCount; i++) { // 每个线程处理的数据 List<Student> threadDatas = allStudents.stream() .skip(i * dataPartionLength).limit(dataPartionLength) .collect(Collectors.toList()); studentThreadPool.execute(() -> { studentService.updateStudentsThread(threadDatas, threadLatchs, mainLatch, taskStatus); }); } try { // 倒计时锁设置超时时间 30s boolean await = threadLatchs.await(30, TimeUnit.SECONDS); if (!await) { // 等待超时,事务回滚 taskStatus.setIsError(); } } catch (Throwable e) { e.printStackTrace(); taskStatus.setIsError(); } mainLatch.countDown(); // 切换到子线程执行 studentThreadPool.shutdown(); //关闭线程池 System.out.println("主线程完成"); }
本想再次测试一下不同线程数对执行效率的影响时,发现当线程数超过10个时,执行时就报错。具体错误内容如下:
Exception in thread "pool-1-thread-2" org.springframework.transaction.CannotCreateTransactionException: Could not open JDBC Connection for transaction; nested exception is java.sql.SQLTransientConnectionException: HikariPool-1 - Connection is not available, request timed out after 30055ms. at org.springframework.jdbc.datasource.DataSourceTransactionManager.doBegin(DataSourceTransactionManager.java:309) at org.springframework.transaction.support.AbstractPlatformTransactionManager.startTransaction(AbstractPlatformTransactionManager.java:400) at org.springframework.transaction.support.AbstractPlatformTransactionManager.getTransaction(AbstractPlatformTransactionManager.java:373) at com.example.springbootmybatis.service.Impl.StudentServiceImpl.updateStudentsThread(StudentServiceImpl.java:58) at com.example.springbootmybatis.StudentTest.lambda$updateStudentWithThreadsAndTrans$3(StudentTest.java:164) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:748) Caused by: java.sql.SQLTransientConnectionException: HikariPool-1 - Connection is not available, request timed out after 30055ms. at com.zaxxer.hikari.pool.HikariPool.createTimeoutException(HikariPool.java:696) at com.zaxxer.hikari.pool.HikariPool.getConnection(HikariPool.java:197) at com.zaxxer.hikari.pool.HikariPool.getConnection(HikariPool.java:162) at com.zaxxer.hikari.HikariDataSource.getConnection(HikariDataSource.java:128) at org.springframework.jdbc.datasource.DataSourceTransactionManager.doBegin(DataSourceTransactionManager.java:265) ... 7 more
错误的大致意思时,不能为数据库事务打开 jdbc Connection
,连接在30s的时候超时了。由于前面启动的十个线程需要等待主线程完成后才能提交,所以一直占用连接未释放,造成后面的进程创建连接超时。
看错误日志中错误的来源是 HikariPool
,我们来重新配置一下这个连接池的参数,将最大连接数修改为100,具体配置如下:
# 连接池中允许的最小连接数。缺省值:10 spring.datasource.hikari.minimum-idle=10 # 连接池中允许的最大连接数。缺省值:10 spring.datasource.hikari.maximum-pool-size=100 # 自动提交 spring.datasource.hikari.auto-commit=true # 一个连接idle状态的最大时长(毫秒),超时则被释放(retired),缺省:10分钟 spring.datasource.hikari.idle-timeout=30000 # 一个连接的生命时长(毫秒),超时而且没被使用则被释放(retired),缺省:30分钟,建议设置比数据库超时时长少30秒 spring.datasource.hikari.max-lifetime=1800000 # 等待连接池分配连接的最大时长(毫秒),超过这个时长还没可用的连接则发生SQLException, 缺省:30秒
再次执行测试发现没有报错,修改线程数为20又执行了一下,同样执行成功了。
五、基于TransactionStatus集合来控制多线程事务提交
在同事推荐下我们使用事务集合来进行多线程事务控制,主要代码如下
@Service public class StudentsTransactionThread { @Autowired private StudentMapper studentMapper; @Autowired private StudentService studentService; @Autowired private PlatformTransactionManager transactionManager; List<TransactionStatus> transactionStatuses = Collections.synchronizedList(new ArrayList<TransactionStatus>()); @Transactional(propagation = Propagation.REQUIRED, rollbackFor = {Exception.class}) public void updateStudentWithThreadsAndTrans() throws InterruptedException { //查询总数据 List<Student> allStudents = studentMapper.getAll(); // 线程数量 final Integer threadCount = 2; //每个线程处理的数据量 final Integer dataPartionLength = (allStudents.size() + threadCount - 1) / threadCount; // 创建多线程处理任务 ExecutorService studentThreadPool = Executors.newFixedThreadPool(threadCount); CountDownLatch threadLatchs = new CountDownLatch(threadCount); AtomicBoolean isError = new AtomicBoolean(false); try { for (int i = 0; i < threadCount; i++) { // 每个线程处理的数据 List<Student> threadDatas = allStudents.stream() .skip(i * dataPartionLength).limit(dataPartionLength).collect(Collectors.toList()); studentThreadPool.execute(() -> { try { try { studentService.updateStudentsTransaction(transactionManager, transactionStatuses, threadDatas); } catch (Throwable e) { e.printStackTrace(); isError.set(true); }finally { threadLatchs.countDown(); } } catch (Exception e) { e.printStackTrace(); isError.set(true); } }); } // 倒计时锁设置超时时间 30s boolean await = threadLatchs.await(30, TimeUnit.SECONDS); // 判断是否超时 if (!await) { isError.set(true); } } catch (Throwable e) { e.printStackTrace(); isError.set(true); } if (!transactionStatuses.isEmpty()) { if (isError.get()) { transactionStatuses.forEach(s -> transactionManager.rollback(s)); } else { transactionStatuses.forEach(s -> transactionManager.commit(s)); } } System.out.println("主线程完成"); } }
@Override @Transactional(propagation = Propagation.REQUIRED, rollbackFor = {Exception.class}) public void updateStudentsTransaction(PlatformTransactionManager transactionManager, List<TransactionStatus> transactionStatuses, List<Student> students) { // 使用这种方式将事务状态都放在同一个事务里面 DefaultTransactionDefinition def = new DefaultTransactionDefinition(); def.setPropagationBehavior(TransactionDefinition.PROPAGATION_REQUIRES_NEW); // 事物隔离级别,开启新事务,这样会比较安全些。 TransactionStatus status = transactionManager.getTransaction(def); // 获得事务状态 transactionStatuses.add(status); students.forEach(s -> { // 更新教师信息 // String teacher = s.getTeacher(); String newTeacher = "TNO_" + new Random().nextInt(100); s.setTeacher(newTeacher); studentMapper.update(s); }); System.out.println("子线程:" + Thread.currentThread().getName()); }
由于这个中方式去前面方式相同,需要等待线程执行完成后才会提交事务,所有任会占用Jdbc连接池,如果线程数量超过连接池最大数量会产生连接超时。所以在使用过程中任要控制线程数量,
六、使用union连接多个select实现批量update
有些情况写不支持,批量update,但支持insert 多条数据,这个时候可尝试将需要更新的数据拼接成多条select 语句,然后使用union 连接起来,再使用update 关联这个数据进行update,具体代码演示如下:
update student,( (select 1 as id,'teacher_A' as teacher) union (select 2 as id,'teacher_A' as teacher) union (select 3 as id,'teacher_A' as teacher) union (select 4 as id,'teacher_A' as teacher) /* ....more data ... */ ) as new_teacher set student.teacher=new_teacher.teacher where student.id=new_teacher.id
这种方式在Mysql 数据库没有配置 allowMultiQueries=true
也可以实现批量更新。
总结
- 对于大批量数据库操作,使用手动事务提交可以很多程度上提高操作效率
- 多线程对数据库进行操作时,并非线程数越多操作时间越快,按上述示例大约在2-5个线程时操作时间最快。
- 对于多线程阻塞事务提交时,线程数量不能过多。
- 如果能有办法实现批量更新那是最好