影醉阏轩窗

衣带渐宽终不悔,为伊消得人憔悴。
扩大
缩小

滑动平均模型原理+源码分析

滑动平均原理部分

  注释:原理部分参考http://www.mbalib.com/,不过这个讲解的太菜了,评论清一色都是看不懂,大家简单看一下原理,例子别看了,越看越糊涂~~

  一、简单移动平均法

    简单移动平均的各元素的权重都相等。简单的移动平均的计算公式如下: Ft=(At-1+At-2+At-3+…+At-n)/n式中,

    ·Ft--对下一期的预测值;

    ·n--移动平均的时期个数;

    ·At-1--前期实际值;

    ·At-2,At-3和At-n分别表示前两期、前三期直至前n期的实际值。

  二、加权移动平均法

    加权移动平均给固定跨越期限内的每个变量值以不同的权重。其原理是:历史各期产品需求的数据信息对预测未来期内的需求量的作用是不一样的。除了以n为周期的周期性变化外,远离目标期的变量值的影响力相对较低,故应给予较低的权重。加权移动平均法的计算公式如下:

    Ft=w1At-1+w2At-2+w3At-3+…+wnAt-n式中,

    ·w1--第t-1期实际销售额的权重;

    ·w2--第t-2期实际销售额的权重;

    ·wn--第t-n期实际销售额的权

    ·n--预测的时期数;w1+ w2+…+ wn=1

TF滑动平均原理:

  TensorFlow中提供了tf.train.ExponentialMovingAverage 来实现滑动平均模型,在采用随机梯度下降算法训练神经网络时,使用其可以提高模型在测试数据上的健壮性(robustness)。

TensorFlow下的 tf.train.ExponentialMovingAverage 需要提供一个衰减率decay。该衰减率用于控制模型更新的速度。该衰减率用于控制模型更新的速度,ExponentialMovingAverage 对每一个待更新的变量(variable)都会维护一个影子变量(shadow variable),影子变量的初始值就是这个变量的初始值.

  上述公式与之前介绍的一阶滞后滤波法的公式相比较,会发现有很多相似的地方,从名字上面也可以很好的理解这个简约不简单算法的原理:平滑、滤波,即使数据平滑变化,通过调整参数来调整变化的稳定性。
  在滑动平滑模型中, decay 决定了模型更新的速度,越大越趋于稳定。实际运用中,decay 一般会设置为十分接近 1 的常数(0.999或0.9999)。为了使得模型在训练的初始阶段更新得更快,ExponentialMovingAverage 还提供了 num_updates 参数来动态设置 decay 的大小:

  注释:其实原理大家一眼看去就明白了,但是实际操作还是有点麻烦的,我在这里不去单纯的讲解原理怎么实现,下面结合TF的例子和源代码去分析。

TF程序原理:  

 1 import tensorflow as tf
 2 v1 = tf.Variable(0, dtype=tf.float32)#初始化v1变量
 3 step = tf.Variable(0, trainable=False) #初始化step为0
 4 ema = tf.train.ExponentialMovingAverage(0.99,step) #定义平滑类,设置参数以及step
 5 maintain_averages_op = ema.apply([v1]) #定义更新变量平均操作,
 6 with tf.Session() as sess:
 7     # 初始化
 8     init_op = tf.global_variables_initializer()
 9     sess.run(init_op)
10     print (sess.run([v1, ema.average(v1)]))
11     # 更新变量v1的取值
12     sess.run(tf.assign(v1, 5))
13     sess.run(maintain_averages_op)
14     print (sess.run([v1, ema.average(v1)]))
15     # 更新step和v1的取值
16     sess.run(tf.assign(step, 1))
17     sess.run(tf.assign(v1, 1000))
18     sess.run(maintain_averages_op)
19     print (sess.run([v1, ema.average(v1)]))
20     # 更新一次v1的滑动平均值
21     sess.run(maintain_averages_op)
22     print (sess.run([v1, ema.average(v1)]))

程序运行过程:

  step1:V0 = 0 , step = 0 , decay = 0.1

  result  : [0.0,0.0]

  step2:V1 = 0 , step = 0,  decay = 0.1

  result:[5.0,4.5]

  step3:V1 = 1000 , step = 1,  decay = 0.1818

  result:[1000,819.0]

  step4:V1 = 1000 , step = 1,  decay = 0.1818

  result:[1000,967.09094]

TF源代码:
  1 # Copyright 2015 The TensorFlow Authors. All Rights Reserved.
  2 #
  3 # Licensed under the Apache License, Version 2.0 (the "License");
  4 # you may not use this file except in compliance with the License.
  5 # You may obtain a copy of the License at
  6 #
  7 #     http://www.apache.org/licenses/LICENSE-2.0
  8 #
  9 # Unless required by applicable law or agreed to in writing, software
 10 # distributed under the License is distributed on an "AS IS" BASIS,
 11 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 12 # See the License for the specific language governing permissions and
 13 # limitations under the License.
 14 # ==============================================================================
 15 """Maintain moving averages of parameters."""
 16 from __future__ import absolute_import
 17 from __future__ import division
 18 from __future__ import print_function
 19 
 20 from tensorflow.python.framework import dtypes
 21 from tensorflow.python.framework import ops
 22 from tensorflow.python.ops import control_flow_ops
 23 from tensorflow.python.ops import init_ops
 24 from tensorflow.python.ops import math_ops
 25 from tensorflow.python.ops import state_ops
 26 from tensorflow.python.ops import variable_scope
 27 from tensorflow.python.ops import variables
 28 from tensorflow.python.training import slot_creator
 29 from tensorflow.python.util.tf_export import tf_export
 30 
 31 
 32 # TODO(touts): switch to variables.Variable.
 33 def assign_moving_average(variable, value, decay, zero_debias=True, name=None):
 34   """Compute the moving average of a variable.
 35 
 36   The moving average of 'variable' updated with 'value' is:
 37     variable * decay + value * (1 - decay)
 38 
 39   The returned Operation sets 'variable' to the newly computed moving average.
 40 
 41   The new value of 'variable' can be set with the 'AssignSub' op as:
 42      variable -= (1 - decay) * (variable - value)
 43 
 44   Since variables that are initialized to a `0` value will be `0` biased,
 45   `zero_debias` optionally enables scaling by the mathematically correct
 46   debiasing factor of
 47     1 - decay ** num_updates
 48   See `ADAM: A Method for Stochastic Optimization` Section 3 for more details
 49   (https://arxiv.org/abs/1412.6980).
 50 
 51   The names of the debias shadow variables, by default, include both the scope
 52   they were created in and the scope of the variables they debias. They are also
 53   given a uniqifying-suffix.
 54 
 55   E.g.:
 56 
 57   ```
 58     with tf.variable_scope('scope1'):
 59       with tf.variable_scope('scope2'):
 60         var = tf.get_variable('foo')
 61         tf.assign_moving_average(var, 0.0, 1.0)
 62         tf.assign_moving_average(var, 0.0, 0.9)
 63 
 64     # var.name: 'scope1/scope2/foo'
 65     # shadow var names: 'scope1/scope2/scope1/scope2/foo/biased'
 66     #                   'scope1/scope2/scope1/scope2/foo/biased_1'
 67   ```
 68 
 69   Args:
 70     variable: A Variable.
 71     value: A tensor with the same shape as 'variable'.
 72     decay: A float Tensor or float value.  The moving average decay.
 73     zero_debias: A python bool. If true, assume the variable is 0-initialized
 74       and unbias it, as in https://arxiv.org/abs/1412.6980. See docstring in
 75       `_zero_debias` for more details.
 76     name: Optional name of the returned operation.
 77 
 78   Returns:
 79     A reference to the input 'variable' tensor with the newly computed
 80     moving average.
 81   """
 82   with ops.name_scope(name, "AssignMovingAvg",
 83                       [variable, value, decay]) as scope:
 84     with ops.colocate_with(variable):
 85       decay = ops.convert_to_tensor(1.0 - decay, name="decay")
 86       if decay.dtype != variable.dtype.base_dtype:
 87         decay = math_ops.cast(decay, variable.dtype.base_dtype)
 88       if zero_debias:
 89         update_delta = _zero_debias(variable, value, decay)
 90       else:
 91         update_delta = (variable - value) * decay
 92       return state_ops.assign_sub(variable, update_delta, name=scope)
 93 
 94 
 95 def weighted_moving_average(value,
 96                             decay,
 97                             weight,
 98                             truediv=True,
 99                             collections=None,
100                             name=None):
101   """Compute the weighted moving average of `value`.
102 
103   Conceptually, the weighted moving average is:
104     `moving_average(value * weight) / moving_average(weight)`,
105   where a moving average updates by the rule
106     `new_value = decay * old_value + (1 - decay) * update`
107   Internally, this Op keeps moving average variables of both `value * weight`
108   and `weight`.
109 
110   Args:
111     value: A numeric `Tensor`.
112     decay: A float `Tensor` or float value.  The moving average decay.
113     weight:  `Tensor` that keeps the current value of a weight.
114       Shape should be able to multiply `value`.
115     truediv:  Boolean, if `True`, dividing by `moving_average(weight)` is
116       floating point division.  If `False`, use division implied by dtypes.
117     collections:  List of graph collections keys to add the internal variables
118       `value * weight` and `weight` to.
119       Defaults to `[GraphKeys.GLOBAL_VARIABLES]`.
120     name: Optional name of the returned operation.
121       Defaults to "WeightedMovingAvg".
122 
123   Returns:
124     An Operation that updates and returns the weighted moving average.
125   """
126   # Unlike assign_moving_average, the weighted moving average doesn't modify
127   # user-visible variables. It is the ratio of two internal variables, which are
128   # moving averages of the updates.  Thus, the signature of this function is
129   # quite different than assign_moving_average.
130   if collections is None:
131     collections = [ops.GraphKeys.GLOBAL_VARIABLES]
132   with variable_scope.variable_scope(name, "WeightedMovingAvg",
133                                      [value, weight, decay]) as scope:
134     value_x_weight_var = variable_scope.get_variable(
135         "value_x_weight",
136         shape=value.get_shape(),
137         dtype=value.dtype,
138         initializer=init_ops.zeros_initializer(),
139         trainable=False,
140         collections=collections)
141     weight_var = variable_scope.get_variable(
142         "weight",
143         shape=weight.get_shape(),
144         dtype=weight.dtype,
145         initializer=init_ops.zeros_initializer(),
146         trainable=False,
147         collections=collections)
148     numerator = assign_moving_average(
149         value_x_weight_var, value * weight, decay, zero_debias=False)
150     denominator = assign_moving_average(
151         weight_var, weight, decay, zero_debias=False)
152 
153     if truediv:
154       return math_ops.truediv(numerator, denominator, name=scope.name)
155     else:
156       return math_ops.div(numerator, denominator, name=scope.name)
157 
158 
159 def _zero_debias(unbiased_var, value, decay):
160   """Compute the delta required for a debiased Variable.
161 
162   All exponential moving averages initialized with Tensors are initialized to 0,
163   and therefore are biased to 0. Variables initialized to 0 and used as EMAs are
164   similarly biased. This function creates the debias updated amount according to
165   a scale factor, as in https://arxiv.org/abs/1412.6980.
166 
167   To demonstrate the bias the results from 0-initialization, take an EMA that
168   was initialized to `0` with decay `b`. After `t` timesteps of seeing the
169   constant `c`, the variable have the following value:
170 
171   ```
172     EMA = 0*b^(t) + c*(1 - b)*b^(t-1) + c*(1 - b)*b^(t-2) + ...
173         = c*(1 - b^t)
174   ```
175 
176   To have the true value `c`, we would divide by the scale factor `1 - b^t`.
177 
178   In order to perform debiasing, we use two shadow variables. One keeps track of
179   the biased estimate, and the other keeps track of the number of updates that
180   have occurred.
181 
182   Args:
183     unbiased_var: A Variable representing the current value of the unbiased EMA.
184     value: A Tensor representing the most recent value.
185     decay: A Tensor representing `1-decay` for the EMA.
186 
187   Returns:
188     The amount that the unbiased variable should be updated. Computing this
189     tensor will also update the shadow variables appropriately.
190   """
191   with variable_scope.variable_scope(
192       unbiased_var.op.name, values=[unbiased_var, value, decay]) as scope:
193     with ops.colocate_with(unbiased_var):
194       with ops.init_scope():
195         biased_initializer = init_ops.zeros_initializer(
196             dtype=unbiased_var.dtype)(unbiased_var.get_shape())
197         local_step_initializer = init_ops.zeros_initializer()
198       def _maybe_get_unique(name):
199         """Get name for a unique variable, if not `reuse=True`."""
200         if variable_scope.get_variable_scope().reuse:
201           return name
202         vs_vars = [x.op.name for x in
203                    variable_scope.get_variable_scope().global_variables()]
204         full_name = variable_scope.get_variable_scope().name + "/" + name
205         if full_name not in vs_vars: return name
206         idx = 1
207         while full_name + ("_%d" % idx) in vs_vars:
208           idx += 1
209         return name + ("_%d" % idx)
210       biased_var = variable_scope.get_variable(
211           _maybe_get_unique("biased"), initializer=biased_initializer,
212           trainable=False)
213       local_step = variable_scope.get_variable(
214           _maybe_get_unique("local_step"),
215           shape=[],
216           dtype=unbiased_var.dtype,
217           initializer=local_step_initializer,
218           trainable=False)
219 
220       # Get an update ops for both shadow variables.
221       update_biased = state_ops.assign_sub(biased_var,
222                                            (biased_var - value) * decay,
223                                            name=scope.name)
224       update_local_step = local_step.assign_add(1)
225 
226       # Compute the value of the delta to update the unbiased EMA. Make sure to
227       # use the new values of the biased variable and the local step.
228       with ops.control_dependencies([update_biased, update_local_step]):
229         # This function gets `1 - decay`, so use `1.0 - decay` in the exponent.
230         unbiased_ema_delta = (unbiased_var - biased_var.read_value() /
231                               (1 - math_ops.pow(
232                                   1.0 - decay, local_step.read_value())))
233 
234       return unbiased_ema_delta
235 
236 
237 @tf_export("train.ExponentialMovingAverage")
238 class ExponentialMovingAverage(object):
239   """Maintains moving averages of variables by employing an exponential decay.
240 
241   When training a model, it is often beneficial to maintain moving averages of
242   the trained parameters.  Evaluations that use averaged parameters sometimes
243   produce significantly better results than the final trained values.
244 
245   The `apply()` method adds shadow copies of trained variables and add ops that
246   maintain a moving average of the trained variables in their shadow copies.
247   It is used when building the training model.  The ops that maintain moving
248   averages are typically run after each training step.
249   The `average()` and `average_name()` methods give access to the shadow
250   variables and their names.  They are useful when building an evaluation
251   model, or when restoring a model from a checkpoint file.  They help use the
252   moving averages in place of the last trained values for evaluations.
253 
254   The moving averages are computed using exponential decay.  You specify the
255   decay value when creating the `ExponentialMovingAverage` object.  The shadow
256   variables are initialized with the same initial values as the trained
257   variables.  When you run the ops to maintain the moving averages, each
258   shadow variable is updated with the formula:
259 
260     `shadow_variable -= (1 - decay) * (shadow_variable - variable)`
261 
262   This is mathematically equivalent to the classic formula below, but the use
263   of an `assign_sub` op (the `"-="` in the formula) allows concurrent lockless
264   updates to the variables:
265 
266     `shadow_variable = decay * shadow_variable + (1 - decay) * variable`
267 
268   Reasonable values for `decay` are close to 1.0, typically in the
269   multiple-nines range: 0.999, 0.9999, etc.
270 
271   Example usage when creating a training model:
272 
273   ```python
274   # Create variables.
275   var0 = tf.Variable(...)
276   var1 = tf.Variable(...)
277   # ... use the variables to build a training model...
278   ...
279   # Create an op that applies the optimizer.  This is what we usually
280   # would use as a training op.
281   opt_op = opt.minimize(my_loss, [var0, var1])
282 
283   # Create an ExponentialMovingAverage object
284   ema = tf.train.ExponentialMovingAverage(decay=0.9999)
285 
286   with tf.control_dependencies([opt_op]):
287       # Create the shadow variables, and add ops to maintain moving averages
288       # of var0 and var1. This also creates an op that will update the moving
289       # averages after each training step.  This is what we will use in place
290       # of the usual training op.
291       training_op = ema.apply([var0, var1])
292 
293   ...train the model by running training_op...
294   ```
295 
296   There are two ways to use the moving averages for evaluations:
297 
298   *  Build a model that uses the shadow variables instead of the variables.
299      For this, use the `average()` method which returns the shadow variable
300      for a given variable.
301   *  Build a model normally but load the checkpoint files to evaluate by using
302      the shadow variable names.  For this use the `average_name()` method.  See
303      the @{tf.train.Saver} for more
304      information on restoring saved variables.
305 
306   Example of restoring the shadow variable values:
307 
308   ```python
309   # Create a Saver that loads variables from their saved shadow values.
310   shadow_var0_name = ema.average_name(var0)
311   shadow_var1_name = ema.average_name(var1)
312   saver = tf.train.Saver({shadow_var0_name: var0, shadow_var1_name: var1})
313   saver.restore(...checkpoint filename...)
314   # var0 and var1 now hold the moving average values
315   ```
316   """
317 
318   def __init__(self, decay, num_updates=None, zero_debias=False,
319                name="ExponentialMovingAverage"):
320     """Creates a new ExponentialMovingAverage object.
321 
322     The `apply()` method has to be called to create shadow variables and add
323     ops to maintain moving averages.
324 
325     The optional `num_updates` parameter allows one to tweak the decay rate
326     dynamically. It is typical to pass the count of training steps, usually
327     kept in a variable that is incremented at each step, in which case the
328     decay rate is lower at the start of training.  This makes moving averages
329     move faster.  If passed, the actual decay rate used is:
330 
331       `min(decay, (1 + num_updates) / (10 + num_updates))`
332 
333     Args:
334       decay: Float.  The decay to use.
335       num_updates: Optional count of number of updates applied to variables.
336       zero_debias: If `True`, zero debias moving-averages that are initialized
337         with tensors.
338       name: String. Optional prefix name to use for the name of ops added in
339         `apply()`.
340     """
341     self._decay = decay
342     self._num_updates = num_updates
343     self._zero_debias = zero_debias
344     self._name = name
345     self._averages = {}
346   def apply(self, var_list=None):
347     """Maintains moving averages of variables.
348 
349     `var_list` must be a list of `Variable` or `Tensor` objects.  This method
350     creates shadow variables for all elements of `var_list`.  Shadow variables
351     for `Variable` objects are initialized to the variable's initial value.
352     They will be added to the `GraphKeys.MOVING_AVERAGE_VARIABLES` collection.
353     For `Tensor` objects, the shadow variables are initialized to 0 and zero
354     debiased (see docstring in `assign_moving_average` for more details).
355 
356     shadow variables are created with `trainable=False` and added to the
357     `GraphKeys.ALL_VARIABLES` collection.  They will be returned by calls to
358     `tf.global_variables()`.
359 
360     Returns an op that updates all shadow variables as described above.
361 
362     Note that `apply()` can be called multiple times with different lists of
363     variables.
364 
365     Args:
366       var_list: A list of Variable or Tensor objects. The variables
367         and Tensors must be of types float16, float32, or float64.
368 
369     Returns:
370       An Operation that updates the moving averages.
371 
372     Raises:
373       TypeError: If the arguments are not all float16, float32, or float64.
374       ValueError: If the moving average of one of the variables is already
375         being computed.
376     """
377     # TODO(touts): op_scope
378     if var_list is None:
379       var_list = variables.trainable_variables()
380     zero_debias_true = set()  # set of vars to set `zero_debias=True`
381     for var in var_list:
382       if var.dtype.base_dtype not in [dtypes.float16, dtypes.float32,
383                                       dtypes.float64]:
384         raise TypeError("The variables must be half, float, or double: %s" %
385                         var.name)
386       if var in self._averages:
387         raise ValueError("Moving average already computed for: %s" % var.name)
388 
389       # For variables: to lower communication bandwidth across devices we keep
390       # the moving averages on the same device as the variables. For other
391       # tensors, we rely on the existing device allocation mechanism.
392       with ops.init_scope():
393         if isinstance(var, variables.Variable):
394           avg = slot_creator.create_slot(var,
395                                          var.initialized_value(),
396                                          self._name,
397                                          colocate_with_primary=True)
398           # NOTE(mrry): We only add `tf.Variable` objects to the
399           # `MOVING_AVERAGE_VARIABLES` collection.
400           ops.add_to_collection(ops.GraphKeys.MOVING_AVERAGE_VARIABLES, var)
401         else:
402           avg = slot_creator.create_zeros_slot(
403               var,
404               self._name,
405               colocate_with_primary=(var.op.type in ["Variable",
406                                                      "VariableV2",
407                                                      "VarHandleOp"]))
408           if self._zero_debias:
409             zero_debias_true.add(avg)
410       self._averages[var] = avg
411 
412     with ops.name_scope(self._name) as scope:
413       decay = ops.convert_to_tensor(self._decay, name="decay")
414       if self._num_updates is not None:
415         num_updates = math_ops.cast(self._num_updates,
416                                     dtypes.float32,
417                                     name="num_updates")
418         decay = math_ops.minimum(decay,
419                                  (1.0 + num_updates) / (10.0 + num_updates))
420       updates = []
421       for var in var_list:
422         zero_debias = self._averages[var] in zero_debias_true
423         updates.append(assign_moving_average(
424             self._averages[var], var, decay, zero_debias=zero_debias))
425       return control_flow_ops.group(*updates, name=scope)
426 
427   def average(self, var):
428     """Returns the `Variable` holding the average of `var`.
429 
430     Args:
431       var: A `Variable` object.
432 
433     Returns:
434       A `Variable` object or `None` if the moving average of `var`
435       is not maintained.
436     """
437     return self._averages.get(var, None)
438 
439   def average_name(self, var):
440     """Returns the name of the `Variable` holding the average for `var`.
441 
442     The typical scenario for `ExponentialMovingAverage` is to compute moving
443     averages of variables during training, and restore the variables from the
444     computed moving averages during evaluations.
445 
446     To restore variables, you have to know the name of the shadow variables.
447     That name and the original variable can then be passed to a `Saver()` object
448     to restore the variable from the moving average value with:
449       `saver = tf.train.Saver({ema.average_name(var): var})`
450 
451     `average_name()` can be called whether or not `apply()` has been called.
452 
453     Args:
454       var: A `Variable` object.
455 
456     Returns:
457       A string: The name of the variable that will be used or was used
458       by the `ExponentialMovingAverage class` to hold the moving average of
459       `var`.
460     """
461     if var in self._averages:
462       return self._averages[var].op.name
463     return ops.get_default_graph().unique_name(
464         var.op.name + "/" + self._name, mark_as_used=False)
465 
466   def variables_to_restore(self, moving_avg_variables=None):
467     """Returns a map of names to `Variables` to restore.
468 
469     If a variable has a moving average, use the moving average variable name as
470     the restore name; otherwise, use the variable name.
471 
472     For example,
473 
474     ```python
475       variables_to_restore = ema.variables_to_restore()
476       saver = tf.train.Saver(variables_to_restore)
477     ```
478 
479     Below is an example of such mapping:
480 
481     ```
482       conv/batchnorm/gamma/ExponentialMovingAverage: conv/batchnorm/gamma,
483       conv_4/conv2d_params/ExponentialMovingAverage: conv_4/conv2d_params,
484       global_step: global_step
485     ```
486     Args:
487       moving_avg_variables: a list of variables that require to use of the
488         moving variable name to be restored. If None, it will default to
489         variables.moving_average_variables() + variables.trainable_variables()
490 
491     Returns:
492       A map from restore_names to variables. The restore_name can be the
493       moving_average version of the variable name if it exist, or the original
494       variable name.
495     """
496     name_map = {}
497     if moving_avg_variables is None:
498       # Include trainable variables and variables which have been explicitly
499       # added to the moving_average_variables collection.
500       moving_avg_variables = variables.trainable_variables()
501       moving_avg_variables += variables.moving_average_variables()
502     # Remove duplicates
503     moving_avg_variables = set(moving_avg_variables)
504     # Collect all the variables with moving average,
505     for v in moving_avg_variables:
506       name_map[self.average_name(v)] = v
507     # Make sure we restore variables without moving averages as well.
508     moving_avg_variable_names = set([v.name for v in moving_avg_variables])
509     for v in list(set(variables.global_variables())):
510       if v.name not in moving_avg_variable_names and v.op.name not in name_map:
511         name_map[v.op.name] = v
512     return name_map

注释:

  源代码读起来还是有一点吃力,可能我基础太差了,下面大概解读一下源代码。

  1.class ExponentialMovingAverage(object)整个核心是寄托整个类进行的,下面的函数都是基于此

  2.初始化函数

1 def __init__(self, decay, num_updates=None, zero_debias=False,
2                name="ExponentialMovingAverage")
3      decay: Float.  The decay to use.初始化的权重
4      num_updates: Optional count of number of updates applied to variables.用来计算decay的一个迭代次数
5      zero_debias: If `True`, zero debias moving-averages that are initialized
6         with tensors.
7      name: String. Optional prefix name to use for the name of ops added in
8         `apply()`.

  3.def apply(self, var_list=None)

    var_list:当前已知的序列(用已知去预测未知)

    最关键的一点是average函数的求解释在此函数之内进行的。

    此函数释整个类的核心,滑动平均算法也是写在里面的。

  4.def average_name(self, var)

    读取平均值,也就是预测的值,上面讲解过了,此函数的代码实现是在apply中进行的。

  5.def variables_to_restore(self, moving_avg_variables=None)

    保存滑动平均数据

注释:让我最不能理解的是明明是min函数,最后得到的却是max~~~

decay = math_ops.minimum(decay,(1.0 + num_updates) / (10.0 + num_updates))

可能源代码有问题,反正实现很简单了。。

 

 

 

 
 

posted on 2018-05-15 16:04  影醉阏轩窗  阅读(1243)  评论(0编辑  收藏  举报

导航

/* 线条鼠标集合 */ /* 鼠标点击求赞文字特效 */ //带头像评论