影醉阏轩窗

衣带渐宽终不悔,为伊消得人憔悴。
扩大
缩小

《机器学习实战》朴素贝叶斯

 

 


 

1.朴素贝叶斯理论

  注释:斯坦福大学课程有朴素贝叶斯,之前也看过相关文献,现在学起来比较省力。

     http://www.cnblogs.com/wjy-lulu/p/7770450.html

  理论部分直接看上面我之前写的博文就可以啦,如果没有点基础直接写代码有点麻烦!

2.代码实现

     2.1构造特征向量

 1 #建立数据和标签
 2 def loadDataSet():
 3     postingList = [
 4                     ['my','dog','has','has','flea','problems','help','please']
 5                     ['maybe','not','take','him','to','dog','park','stupid']
 6                     ['my','dalmation','is','so','cute','I','love','him']
 7                     ['stop','posting','stupid','worthless','garbage']
 8                     ['mr','licks','ate','my','steak','how','to','stop','him']
 9                     ['quit','buying','worthless','dog','food','food','stupid']
10                    ]
11     classVec = [0,1,0,1,0,1]#标签
12     return postingList, classVec
13 #得到样本里面不同特征的数量
14 def creatVocaList(dataSet):
15     vocbSet = set([])
16     for document in dataSet:
17         vocbSet = vocbSet | set(document) #求并集
18     return list(vocbSet) #转化为list输出
19 #对输入数据进行标记,这里看不懂的可以看博文首页的
20 #当然,如果你输入的数据要是样本没有的特征,那就GG
21 def setOfWord2Vec(vocabList,inputSet):
22     returnVec = [0]*len(vocabList)
23     for word in inputSet:
24         if word in vocabList:
25             returnVec[vocabList.index(word)] = 1
26         else:
27             print('the word : %s is not in my Vocabulary!',word)
28     return returnVec

   2.2词向量计算概率   

 1 def trainNB0(trainMtraix,trainCategory):
 2     #trainMtraix:标记好的样本
 3     #trainCategory:标签
 4     numTrainDocs = len(trainMtraix)#样本数量
 5     numWords = len(trainMtraix[0])#每个样本的特征数
 6     pAbusive = sum(trainCategory)/float(numTrainDocs)#侮辱类百分比,由于是二项分布所以1-P(A)就可以
 7     p0Num = np.ones(numWords);p1Num = np.ones(numWords)
 8     p0Denom = 2.0; p1Denom = 2.0    #除法之后变为浮点数
 9     for i in range(numTrainDocs):
10         if trainCategory[i] == 1:
11             p1Num += trainMtraix[i] #侮辱类样本特征
12             p1Denom += sum(trainMtraix[i])#侮辱类样本数量
13         else:
14             p0Num += trainMtraix[i]
15             p0Denom += sum(trainMtraix[i])
16     p1Vect = np.log(p1Num/p1Denom)  #侮辱类特征百分比
17     p0Vect = np.log(p0Num/p0Denom)  #
18     #侮辱类特征百分比/非侮辱类特征百分比/侮辱类样本百分比
19     return p0Vect, p1Vect, pAbusive
 1 #这个函数细节见博文说明
 2 def classfyNB(vec2Classfy,p0Vec,p1Vec,pClass1):
 3     p1 = sum(vec2Classfy*p1Vec) + np.log(pClass1)
 4     p0 = sum(vec2Classfy*p0Vec) + np.log(1.0-pClass1)
 5     if p1 > p0 : return 1
 6     return 0
 7 #把数量加进去啦,这样更准确,这里博文开头链接已经说明
 8 def begOfWordsVecMN(vocabList,inputSet):
 9     returnVec = [0]*len(vocabList)
10     for words in inputSet:
11         if words in vocabList:
12             returnVec[vocabList.index(words)] += 1
13     return returnVec

   2.3难点解析

    书中的代码都是经过改进或者省略了中间的推到,直接使用或者编写有点难懂,下一课还有类似问题。

    以下是改进之后的贝叶斯函数,整体加Log()不影响对结果的预测,作用是防止有的数太小,这个书中和网上都已经说明,但是没有具体的公式和具体的解释,可能大神都懂吧。不懂的人看下面具体每个参数含义,和代码完全匹配。

    还有一个防止概率为0,这个在Ng的课程中是加一个1,具体的看连接:http://www.cnblogs.com/wjy-lulu/p/7765939.html

   2.4总程序    

  1 import numpy as np
  2 import operator
  3 import matplotlib.pyplot as plt
  4 
  5 #建立数据和标签
  6 def loadDataSet():
  7     postingList = [
  8                     ['my','dog','has','has','flea','problems','help','please'],\
  9                     ['maybe','not','take','him','to','dog','park','stupid'],\
 10                     ['my','dalmation','is','so','cute','I','love','him'],\
 11                     ['stop','posting','stupid','worthless','garbage'],\
 12                     ['mr','licks','ate','my','steak','how','to','stop','him'],\
 13                     ['quit','buying','worthless','dog','food','food','stupid']
 14                    ]
 15     classVec = [0,1,0,1,0,1]#标签
 16     return postingList, classVec
 17 #得到样本里面不同特征
 18 def creatVocaList(dataSet):
 19     vocbSet = set([])
 20     for document in dataSet:
 21         vocbSet = vocbSet | set(document) #求并集
 22     return list(vocbSet) #转化为list输出
 23 #对输入数据进行标记,这里看不懂的可以看博文首页的链接
 24 #当然,如果你输入的数据要是样本没有的特征,那就GG
 25 def setOfWord2Vec(vocabList,inputSet):
 26     returnVec = [0]*len(vocabList)
 27     for word in inputSet:
 28         if word in vocabList:
 29             returnVec[vocabList.index(word)] = 1
 30         else:
 31             print('the word : %s is not in my Vocabulary!',word)
 32     return returnVec
 33 
 34 def trainNB0(trainMtraix,trainCategory):
 35     #trainMtraix:标记好的样本
 36     #trainCategory:标签
 37     numTrainDocs = len(trainMtraix)#样本数量
 38     numWords = len(trainMtraix[0])#每个样本的特征数
 39     pAbusive = sum(trainCategory)/float(numTrainDocs)#侮辱类百分比,由于是二项分布所以1-P(A)就可以
 40     p0Num = np.ones(numWords);p1Num = np.ones(numWords)
 41     p0Denom = 2.0; p1Denom = 2.0    #除法之后变为浮点数
 42     for i in range(numTrainDocs):
 43         if trainCategory[i] == 1:
 44             p1Num += trainMtraix[i] #侮辱类样本特征
 45             p1Denom += sum(trainMtraix[i])#侮辱类样本数量
 46         else:
 47             p0Num += trainMtraix[i]
 48             p0Denom += sum(trainMtraix[i])
 49     p1Vect = np.log(p1Num/p1Denom)  #侮辱类特征百分比
 50     p0Vect = np.log(p0Num/p0Denom)  #
 51     #侮辱类特征百分比/非侮辱类特征百分比/侮辱类样本百分比
 52     return p0Vect, p1Vect, pAbusive
 53 #这个函数细节见博文说明
 54 def classfyNB(vec2Classfy,p0Vec,p1Vec,pClass1):
 55     p1 = sum(vec2Classfy*p1Vec) + np.log(pClass1)
 56     p0 = sum(vec2Classfy*p0Vec) + np.log(1.0-pClass1)
 57     if p1 > p0 : return 1
 58     return 0
 59 #把数量加进去啦,这样更准确,这里博文开头链接已经说明
 60 def begOfWordsVecMN(vocabList,inputSet):
 61     returnVec = [0]*len(vocabList)
 62     for words in inputSet:
 63         if words in vocabList:
 64             returnVec[vocabList.index(words)] += 1
 65     return returnVec
 66 
 67 def textPharse(bigString):
 68     import re
 69     #标点符号分割
 70     listOfTokens = re.split(r'\W*',bigString)
 71     #标点符号去除
 72     return [data.lower() for data in listOfTokens if len(data) > 2]
 73 def spamTest():
 74     docList = []
 75     classList = []
 76     fullList = []
 77     for i in range(1,26):
 78         wordList = textPharse(open('spam/'+str(i)+'.txt').read())
 79         docList.append(wordList)
 80         fullList.extend(wordList)
 81         #fullList = set(fullList)#提出重复特征
 82         classList.append(1)
 83         wordList = textPharse(open('ham/'+str(i)+'.txt').read())
 84         docList.append(wordList)
 85         fullList.extend(wordList)
 86         classList.append(0)
 87     vocabList = creatVocaList(docList)#不同的特征
 88     trainingSet = list(range(50))
 89     testSet = []
 90     #剔除10个测试集
 91     for i in range(10):
 92         randIndex = int(np.random.uniform(0,len(trainingSet)))#一个0-50的正太分布
 93         #从trainingSet里面找,避免了再判断重复的麻烦
 94         testSet.append(trainingSet[randIndex])
 95         del(trainingSet[randIndex])
 96     trainMat = []
 97     trainClassSet = []
 98     for docIndex in trainingSet:
 99         trainMat.append(setOfWord2Vec(vocabList,docList[docIndex]))#训练数据转化,整合
100         trainClassSet.append(classList[docIndex])#训练标签跟进
101     p0V, p1V, pSpam = trainNB0(np.array(trainMat),np.array(trainClassSet))
102     errorCount = 0
103     for docIndex in testSet:
104         wordVector = setOfWord2Vec(vocabList,docList[docIndex])
105         if classfyNB(np.array(wordVector),p0V,p1V,pSpam) != classList[docIndex]:
106             errorCount += 1
107     print('the error rate is :',float(errorCount)/len(testSet))
108 
109 def calcMostFreq(vocabList,fullText):
110     import operator
111     freqDict = {}
112     #统计每个词出现的次数
113     for token in vocabList:
114         freqDict[token] = fullText.count(token)
115     sortedFreq = sorted(freqDict.items(),key=operator.itemgetter(1),reverse=True)
116     return sortedFreq[:5]#只要词出现最多的30个数据
117 def localWords(feed1,feed0):
118     import feedparser
119     docList = []
120     classList = []
121     fullText = []
122     minLen = min(len(feed1['entries']),len(feed0['entries']))
123     for i in range(minLen):
124         #第一个地域
125         wordList = textPharse(feed1['entries'][i]['summary'])
126         docList.append(wordList)
127         fullText.extend(wordList)#一维表示的总的数据
128         classList.append(1)
129         #第二个地域
130         wordList = textPharse(feed0['entries'][i]['summary'])
131         docList.append(wordList)
132         fullText.extend(wordList)
133         classList.append(0)
134     vocabList = creatVocaList(docList) #相互不同的特征
135     top30Words = calcMostFreq(vocabList,fullText)
136     #移除出现频率最多的30个特征
137     for pairW in top30Words:
138         if pairW[0] in vocabList : vocabList.remove(pairW[0])
139     trainingSet = list(range(2*minLen))#其实总的特征为 2×minLen-30
140     testSet = []
141     #分割数据,训练和测试分开
142     for i in range(10):
143         randIndex = int(np.random.uniform(0,len(trainingSet)))
144         testSet.append(trainingSet[randIndex])
145         del(trainingSet[randIndex])
146     #开始训练
147     trainMat = []
148     trainClass = []
149     for docIndex in trainingSet:
150         trainMat.append(begOfWordsVecMN(vocabList,docList[docIndex]))
151         trainClass.append(classList[docIndex])
152     p0, p1, pSam = trainNB0(np.array(trainMat),np.array(trainClass))
153     errorcount = 0.0
154     for docIndex in testSet:
155         wordsVect = begOfWordsVecMN(vocabList,docList[docIndex])
156         if classfyNB(np.array(wordsVect),p0,p1,pSam) != classList[docIndex]:
157             errorcount += 1
158     print('error rate is : ',(1.0*errorcount)/float(len(testSet)))
159     return vocabList, p0, p1
160 def getTopWords(ny,sf):
161     import operator
162     vocabList, p0, p1 = localWords(ny,sf)
163     topNY = []
164     topSF = []
165     for i in range(len(p0)):
166         if p0[i] >-6.0 : topSF.append((vocabList[i],p0[i]))
167         if p1[i] >-6.0 : topNY.append((vocabList[i],p1[i]))
168     sortedSF = sorted(topSF,key=lambda num: num[1],reverse=True)
169     for i in sortedSF:
170         print('topSF : ',i,'\n')
171     sortedNY = sorted(topNY, key=lambda num: num[1], reverse=True)
172     for i in sortedNY:
173         print('topNY : ', i, '\n')

 注释:这章节写的不好,因为现在计划早睡早起了,现在已经11点13分,还有几分钟就回去 了,稍微改一下就算了,不想占用明天的时间再去优化博客。。。

posted on 2017-11-28 21:28  影醉阏轩窗  阅读(372)  评论(0编辑  收藏  举报

导航

/* 线条鼠标集合 */ /* 鼠标点击求赞文字特效 */ //带头像评论