Elasticsearch学习笔记之—分词器 analyzer

analyzer

由三部分构成:

Character Filters、Tokenizers、Token filters

Character Filters 负责字符过滤    官方的解释是:字符过滤器用来把阿拉伯数字(٠‎١٢٣٤٥٦٧٨‎٩)‎转成成Arabic-Latin的等价物(0123456789)或用于去掉html内容,如:<b>。

Tokenizers  负责分词,常用的分词器有:whitespace、standard

  1、standard 分词器   StandardAnalyzer  对于英文的处理能力同于StopAnalyzer.支持中文采用的方法为单字切分。他会将词汇单元转换成小写形式,并去除停用词和标点符号。

  2、simple 分词器  SimpleAnalyzer  功能强于WhitespaceAnalyzer, 首先会通过非字母字符来分割文本信息,然后将词汇单元统一为小写形式。该分析器会去掉数字类型的字符。

  3、Whitespace 分词器  WhitespaceAnalyzer  仅仅是去除空格,对字符没有lowcase化,不支持中文; 并且不对生成的词汇单元进行其他的规范化处理。

  4、Stop 分词器  StopAnalyzer  StopAnalyzer的功能超越了SimpleAnalyzer,在SimpleAnalyzer的基础上增加了去除英文中的常用单词(如the,a等),也可以更加自己的需要设置常用单词;不支持中文

  5、keyword 分词器 KeywordAnalyzer 把整个输入作为一个单独词汇单元,方便特殊类型的文本进行索引和检索。针对邮政编码,地址等文本信息使用关键词分词器进行索引项建立非常方便。

  6、pattern 分词器   一个pattern类型的analyzer可以通过正则表达式将文本分成"terms"(经过token Filter 后得到的东西 )

  7、snowball 分词器   一个snowball类型的analyzer是由standard tokenizer和standard filter、lowercase filter、stop filter、snowball filter这四个filter构成的。  snowball analyzer 在Lucene中通常是不推荐使用的。

  8、Custom 分词器  是自定义的analyzer。允许多个零到多个tokenizer,零到多个 Char Filters. custom analyzer 的名字不能以 "_"开头.

  9、ik-analyzer 分词器  采用字典分词   ik_max_word:会将文本做最细粒度的拆分;尽可能多的拆分出词语     ik_smart:会做最粗粒度的拆分;已被分出的词语将不会再次被其它词语占有

  为索引定义个default分词器

PUT /my_index10
{
  "settings": {
    "analysis": {
      "analyzer": {
        "default": {
          "tokenizer": "ik_smart",
          "filter": [
            "synonym"
          ]
        }
      },
      "filter": {
        "synonym": {
          "type": "synonym",
          "synonyms_path": "analysis/synonym.txt"
        }
      }
    }
  },
"mappings": {
    "_doc": {
      "properties": {
        "title": {
          "type": "text"
        }
      }
    }
  }
}

 

PUT person_index
{
  "mappings": {
    "personn": {
      "properties": {
        "id":{
          "type":"integer"
        },
        "name":{
          "type":"text",
                    "analyzer":"standard"
        },
        "address": {
          "type": "text",
                    "analyzer":"standard"
        }
      }
    }
  }
}

 

Token filters  

  1. Standard Token Filter   目前什么也不做
  2. ASCII Folding Token Filter  asciifolding 类型的词元过滤器,将不在前127个ASCII字符(“基本拉丁文”Unicode块)中的字母,数字和符号Unicode字符转换为ASCII等效项(如果存在)。
  3. Length Token Filter   

    length用于去掉过长或者过短的单词;

    min 定义最短长度

    max 定义最长长度

    用法如下:

    GET _analyze
    {
      "tokenizer" : "standard",
      "filter": [{"type": "length", "min":1, "max":3 }],  
      "text" : "this is a test"
    }

    结果:

    "tokens": [
        {
          "token": "is",
          "start_offset": 5,
          "end_offset": 7,
          "type": "<ALPHANUM>",
          "position": 1
        },
        {
          "token": "a",
          "start_offset": 8,
          "end_offset": 9,
          "type": "<ALPHANUM>",
          "position": 2
        }
      ]
  4. Lowercase Token Filter    将词元文本规范化为小写
  5. Uppercase Token Filter    将词元文本规范化为大写
  6. Stop Token Filter   过滤某些关键字  输入:
    {
      "tokenizer" : "standard",
      "filter": [{"type": "stop", "stopwords": ["this", "a"]}],  
      "text" : ["this is a test"]
    }

    输出:

    # stopwords中拦截词this, a 被过滤掉;
    "tokens": [
        {
          "token": "is",
          "start_offset": 5,
          "end_offset": 7,
          "type": "<ALPHANUM>",
          "position": 1
        },
        {
          "token": "test",
          "start_offset": 10,
          "end_offset": 14,
          "type": "<ALPHANUM>",
          "position": 3
        }
      ]

     

  7. Stemmer Token Filter    可以添加几乎所有的词元过滤器,所以是一个通用接口 用法如下
    PUT /my_index
    {
        "settings": {
            "analysis" : {
                "analyzer" : {
                    "my_analyzer" : {
                        "tokenizer" : "standard",
                        "filter" : ["standard", "lowercase", "my_stemmer"]
                    }
                },
                "filter" : {
                    "my_stemmer" : {
                        "type" : "stemmer",
                        "name" : "light_german"
                    }
                }
            }
        }
    }

     

  8. Synonym Token Filter  同意词
  9. Reverse Token Filter  将词反转,示例如下:
    调用:
    GET _analyze {
    "tokenizer": "standard", "filter": ["reverse"], "text": ["hello world"] }
    结果:
    "
    tokens": [ { "token": "olleh", "start_offset": 0, "end_offset": 5, "type": "<ALPHANUM>", "position": 0 }, { "token": "dlrow", "start_offset": 6, "end_offset": 11, "type": "<ALPHANUM>", "position": 1 } ]

     

  10. Unique Token Filter
    GET _analyze
    {
        "tokenizer": "standard",
        "filter": ["unique"],
        "text": ["this is a test test test"]
    }
    后面的多个test,最终生成的时候,只有一个。
    输出:
    "
    tokens": [ { "token": "this", "start_offset": 0, "end_offset": 4, "type": "<ALPHANUM>", "position": 0 }, { "token": "is", "start_offset": 5, "end_offset": 7, "type": "<ALPHANUM>", "position": 1 }, { "token": "a", "start_offset": 8, "end_offset": 9, "type": "<ALPHANUM>", "position": 2 }, { "token": "test", "start_offset": 10, "end_offset": 14, "type": "<ALPHANUM>", "position": 3 } ]

     

  11. Trim Token Filter   去除词元周围的空格
  12. Delimited Payload Token Filter    delimiter定义分割符号, 默认为’|’
    GET _analyze
    {
        "tokenizer": "standard",
        "filter": ["delimited_payload_filter"],
        "text": ["the|1 quick|2 fox|3"]
    }
    "tokens": [
        {
          "token": "the",
          "start_offset": 0,
          "end_offset": 3,
          "type": "<ALPHANUM>",
          "position": 0
        },
        {
          "token": "1",
          "start_offset": 4,
          "end_offset": 5,
          "type": "<NUM>",
          "position": 1
        },
        {
          "token": "quick",
          "start_offset": 6,
          "end_offset": 11,
          "type": "<ALPHANUM>",
          "position": 2
        },
        {
          "token": "2",
          "start_offset": 12,
          "end_offset": 13,
          "type": "<NUM>",
          "position": 3
        },
        {
          "token": "fox",
          "start_offset": 14,
          "end_offset": 17,
          "type": "<ALPHANUM>",
          "position": 4
        },
        {
          "token": "3",
          "start_offset": 18,
          "end_offset": 19,
          "type": "<NUM>",
          "position": 5
        }
      ]

     

  13. Keep Words Token Filter  只保留固定的词,如:
    GET _analyze
    {
        "tokenizer": "standard",
        "filter": [{"type":"keep", "keep_words":["this", "test"]}],
        "text": ["this is a test"]
    }
    #这里 is, a 因为没有在keep_words中定义而被过滤
    "tokens": [
        {
          "token": "this",
          "start_offset": 0,
          "end_offset": 4,
          "type": "<ALPHANUM>",
          "position": 0
        },
        {
          "token": "test",
          "start_offset": 10,
          "end_offset": 14,
          "type": "<ALPHANUM>",
          "position": 3
        }
      ]

     

  14. Fingerprint Token Filter  所有词元按照升序排序,再去重
    GET _analyze
    {
        "tokenizer": "standard",
        "filter": ["fingerprint"],
        "text": ["b a f e c f"]
    }
    "tokens": [
        {
          "token": "a b c e f",
          "start_offset": 0,
          "end_offset": 11,
          "type": "fingerprint",
          "position": 0
        }
      ]

     

posted @ 2019-12-19 16:44  星星c#  阅读(861)  评论(0编辑  收藏  举报