Spark架构与运行流程

1. 阐述Hadoop生态系统中,HDFS, MapReduce, Yarn, Hbase及Spark的相互关系,为什么要引入Yarn和Spark。

HDFS(Hadoop分布式文件系统)源自于Google的GFS论文,发表于2003年10月,HDFS是GFS的实现版。HDFS是Hadoop体系中数据存储管理的基础,它是一个高度容错的系统,能检测和应对硬件故障,在低成本的通用硬件上运行。HDFS简化了文件的一次性模型,通过流式数据访问,提供高吞吐量应用程序数据访问功能,适用带有数据集的应用程序。HDFS提供一次写入多次读取的机制,数据以块的形式,同时分布存储在不同的物理机器上。 
HDFS默认的最基本的存储单位是64MB的数据块,和普通文件系统一样,HDFS中的文件被分成64MB一块的数据块存储。它的开发是基于流数据模式访问和处理超大文件的需求。 

 

Mapduce(分布式计算框架)源自于Google的MapReduce论文,发表于2004年12月,Hadoop MapReduce是Google Reduce 克隆版。MapReduce是一种分布式计算模型,用以进行海量数据的计算。它屏蔽了分布式计算框架细节,将计算抽象成Map 和Reduce两部分,其中Map对数据集上的独立元素进行指定的操作,生成键-值对形式中间结果。Reduce则对中间结果中相同“键”的所有“值”进行规约,以得到最终结果。MapReduce非常适合在大量计算机组成的分布式并行环境里进行数据处理。

 

Hbase(分布式列存数据库)源自Google的BigTable论文,发表于2006年11月,HBase是Google Table的实现。HBase是一个建立在HDFS之上,面向结构化数据的可伸缩、高可靠、高性能、分布式和面向列的动态模式数据库。HBase采用了BigTable的数据模型,即增强的稀疏排序映射表(Key/Value),其中,键由行关键字、列关键字和时间戳构成。HBase提供了对大规模


YARN(分布式资源管理器)是下一代MapReduce,即MRv2,是在第一代MapReduce基础上演变而来的,主要是为了解决原始Hadoop扩展性差,不支持多计算框架而提出的。YARN是下一代Hadoop计算平台,是一个通用的运行时框架,用户可以编写自己的极端框架,在该运行环境中运行。

Spark(内存DAG计算模型)是一个Apche项目,被标榜为“快如闪电的集群计算”,它拥有一个繁荣的开源社区,并且是目前最活跃的Apache项目。最早Spark是UC Berkeley AMP Lab所开源的类Hadoop MapReduce的通用计算框架,Spark提供了一个更快、更通用的数据处理平台。和Hadoop相比,Spark平台可以让你的程序在内存中运行时速度提升100倍,或者在磁盘上运行时速度提升10倍。

目前Spark是一个非常流行的内存计算(或者迭代式计算,DAG计算)框架。

 

A、引用Yarn主要是为了解决原始Hadoop扩展性差和不支持多计算框架问题而提出的

B、Spark的速度比Hadoop更快。因为要完成同样的事情,Hadoop大概要两分钟,而Spark可能只需要1秒。

2. Spark已打造出结构一体化、功能多样化的大数据生态系统,请简述Spark生态系统。

Spark是基于内存计算的大数据分布式计算框架。Spark基于内存计算,提高了在大数据环境下数据处理的实时性,同时保证了高容错性和高可伸缩性,允许用户将Spark部署在大量廉价硬件之上,形成集群。

运行速度快:使用DAG执行引擎以支持循环数据流与内存计算。

容易使用:支持使用scala、java、python和R语言进行编程,可以通过spark shell进行交互式编程。

通用性:spark提供了完整而强大的技术栈,包括SQL查询、流式计算、机器学习和图算法组件。

运行模式多样:可运行于独立的集群模式中,可运行于Hadoop中,也可运行于Amazon EC2等云环境中,并且可以访问HDFS、Cassandra、HBase、Hive等多种数据源。

3. 用图文描述你所理解的Spark运行架构,运行流程。

Spark运行架构及流程:


基本概念:

Application:用户编写的Spark应用程序。
Driver:Spark中的Driver即运行上述Application的main函数并创建SparkContext,创建SparkContext的目的是为了准备Spark应用程序的运行环境,在Spark中有SparkContext负责与ClusterManager通信,进行资源申请、任务的分配和监控等,当Executor部分运行完毕后,Driver同时负责将SparkContext关闭。
Executor:是运行在工作节点(WorkerNode)的一个进程,负责运行Task。
RDD:弹性分布式数据集,是分布式内存的一个抽象概念,提供了一种高度受限的共享内存模型。
DAG:有向无环图,反映RDD之间的依赖关系。
Task:运行在Executor上的工作单元。
Job:一个Job包含多个RDD及作用于相应RDD上的各种操作。
Stage:是Job的基本调度单位,一个Job会分为多组Task,每组Task被称为Stage,或者也被称为TaskSet,代表一组关联的,相互之间没有Shuffle依赖关系的任务组成的任务集。
Cluter Manager:指的是在集群上获取资源的外部服务。目前有三种类型
1) Standalon : spark原生的资源管理,由Master负责资源的分配
2) Apache Mesos:与hadoop MR兼容性良好的一种资源调度框架
3) Hadoop Yarn: 主要是指Yarn中的ResourceManager


一个Application由一个Driver和若干个Job构成,一个Job由多个Stage构成,一个Stage由多个没有Shuffle关系的Task组成。

当执行一个Application时,Driver会向集群管理器申请资源,启动Executor,并向Executor发送应用程序代码和文件,然后在Executor上执行Task,运行结束后,执行结果会返回给Driver,或者写到HDFS或者其它数据库中。

 

Spark运行基本流程:

 

为应用构建起基本的运行环境,即由Driver创建一个SparkContext进行资源的申请、任务的分配和监控
资源管理器为Executor分配资源,并启动Executor进程。
SparkContext根据RDD的依赖关系构建DAG图,DAG图提交给DAGScheduler解析成Stage,然后把一个个TaskSet提交给底层调度器TaskScheduler处理。
Executor向SparkContext申请Task,TaskScheduler将Task发放给Executor运行并提供应用程序代码。
Task在Executor上运行把执行结果反馈给TaskScheduler,然后反馈给DAGScheduler,运行完毕后写入数据并释放所有资源。

posted @ 2021-03-13 22:47  026王渡  阅读(45)  评论(0编辑  收藏  举报