线程,进程,协程
python 线程
Threading用于提供线程相关的操作,线程是应用程序中工作的最小单元。
1、threading模块
threading 模块建立在 _thread 模块之上。thread 模块以低级、原始的方式来处理和控制线程,而 threading 模块通过对 thread 进行二次封装,提供了更方便的 api 来处理线程。
import threading import time def worker(num): """ thread worker function :return: """ time.sleep(1) print("The num is %d" % num) return for i in range(20): t = threading.Thread(target=worker,args=(i,),name=“t.%d” % i) t.start()
上述代码创建了20个“前台”线程,然后控制器就交给了CPU,CPU根据指定算法进行调度,分片执行指令。
Thread方法说明
t.start() : 激活线程,
t.getName() : 获取线程的名称
t.setName() : 设置线程的名称
t.name : 获取或设置线程的名称
t.is_alive() : 判断线程是否为激活状态
t.isAlive() :判断线程是否为激活状态
t.setDaemon() 设置为后台线程或前台线程(默认:False);通过一个布尔值设置线程是否为守护线程,必须在执行start()方法之后才可以使用。如果是后台线程,主线程执行过程中,后台线程也在进行,主线程执行完毕后,后台线程不论成功与否,均停止;如果是前台线程,主线程执行过程中,前台线程也在进行,主线程执行完毕后,等待前台线程也执行完成后,程序停止
t.isDaemon() : 判断是否为守护线程
t.ident :获取线程的标识符。线程标识符是一个非零整数,只有在调用了start()方法之后该属性才有效,否则它只返回None。
t.join() :逐个执行每个线程,执行完毕后继续往下执行,该方法使得多线程变得无意义
t.run() :线程被cpu调度后自动执行线程对象的run方法
2、线程锁threading.RLock和threading.Lock
由于线程之间是进行随机调度,并且每个线程可能只执行n条执行之后,CPU接着执行其他线程。为了保证数据的准确性,引入了锁的概念。所以,可能出现如下问题:
例:假设列表A的所有元素就为0,当一个线程从前向后打印列表的所有元素,另外一个线程则从后向前修改列表的元素为1,那么输出的时候,列表的元素就会一部分为0,一部分为1,这就导致了数据的不一致。锁的出现解决了这个问题。
import threading import time globals_num = 0 lock = threading.RLock() def Func(): lock.acquire() # 获得锁 global globals_num globals_num += 1 time.sleep(1) print(globals_num) lock.release() # 释放锁 for i in range(10): t = threading.Thread(target=Func) t.start()
3、threading.RLock和threading.Lock 的区别
RLock允许在同一线程中被多次acquire。而Lock却不允许这种情况。 如果使用RLock,那么acquire和release必须成对出现,即调用了n次acquire,必须调用n次的release才能真正释放所占用的琐。
import threading lock = threading.Lock() #Lock对象 lock.acquire() lock.acquire() #产生了死琐。 lock.release() lock.release() import threading rLock = threading.RLock() #RLock对象 rLock.acquire() rLock.acquire() #在同一线程内,程序不会堵塞。 rLock.release() rLock.release()
4、threading.Event
python线程的事件用于主线程控制其他线程的执行,事件主要提供了三个方法 set、wait、clear。
事件处理的机制:全局定义了一个“Flag”,如果“Flag”值为 False,那么当程序执行 event.wait 方法时就会阻塞,如果“Flag”值为True,那么event.wait 方法时便不再阻塞。
- clear:将“Flag”设置为False
- set:将“Flag”设置为True
- Event.isSet() :判断标识位是否为Ture。
import threading def do(event): print('start') event.wait() print('execute') event_obj = threading.Event() for i in range(10): t = threading.Thread(target=do, args=(event_obj,)) t.start() event_obj.clear() inp = input('input:') if inp == 'true': event_obj.set()
当线程执行的时候,如果flag为False,则线程会阻塞,当flag为True的时候,线程不会阻塞。它提供了本地和远程的并发性。
5、threading.Condition
一个condition变量总是与某些类型的锁相联系,这个可以使用默认的情况或创建一个,当几个condition变量必须共享和同一个锁的时候,是很有用的。锁是conditon对象的一部分:没有必要分别跟踪。
condition变量服从上下文管理协议:with语句块封闭之前可以获取与锁的联系。 acquire() 和 release() 会调用与锁相关联的相应的方法。
其他和锁关联的方法必须被调用,wait()方法会释放锁,当另外一个线程使用 notify() or notify_all()唤醒它之前会一直阻塞。一旦被唤醒,wait()会重新获得锁并返回,
Condition类实现了一个conditon变量。 这个conditiaon变量允许一个或多个线程等待,直到他们被另一个线程通知。 如果lock参数,被给定一个非空的值,,那么他必须是一个lock或者Rlock对象,它用来做底层锁。否则,会创建一个新的Rlock对象,用来做底层锁。
- wait(timeout=None) : 等待通知,或者等到设定的超时时间。当调用这wait()方法时,如果调用它的线程没有得到锁,那么会抛出一个RuntimeError 异常。 wati()释放锁以后,在被调用相同条件的另一个进程用notify() or notify_all() 叫醒之前 会一直阻塞。wait() 还可以指定一个超时时间。
如果有等待的线程,notify()方法会唤醒一个在等待conditon变量的线程。notify_all() 则会唤醒所有在等待conditon变量的线程。
注意: notify()和notify_all()不会释放锁,也就是说,线程被唤醒后不会立刻返回他们的wait() 调用。除非线程调用notify()和notify_all()之后放弃了锁的所有权。
在典型的设计风格里,利用condition变量用锁去通许访问一些共享状态,线程在获取到它想得到的状态前,会反复调用wait()。修改状态的线程在他们状态改变时调用 notify() or notify_all(),用这种方式,线程会尽可能的获取到想要的一个等待者状态。 例子: 生产者-消费者模型,
import threading import time def consumer(cond): with cond: print("consumer before wait") cond.wait() print("consumer after wait") def producer(cond): with cond: print("producer before notifyAll") cond.notifyAll() print("producer after notifyAll") condition = threading.Condition() c1 = threading.Thread(name="c1", target=consumer, args=(condition,)) c2 = threading.Thread(name="c2", target=consumer, args=(condition,)) p = threading.Thread(name="p", target=producer, args=(condition,)) c1.start() time.sleep(2) c2.start() time.sleep(2) p.start()
6、queue模块
Queue 就是对队列,它是线程安全的
举例来说,我们去麦当劳吃饭。饭店里面有厨师职位,前台负责把厨房做好的饭卖给顾客,顾客则去前台领取做好的饭。这里的前台就相当于我们的队列。形成管道样,厨师做好饭通过前台传送给顾客,所谓单向队列
这个模型也叫生产者-消费者模型。
import queue q = queue.Queue(maxsize=0) # 构造一个先进显出队列,maxsize指定队列长度,为0 时,表示队列长度无限制。 q.join() # 等到队列为kong的时候,在执行别的操作 q.qsize() # 返回队列的大小 (不可靠) q.empty() # 当队列为空的时候,返回True 否则返回False (不可靠) q.full() # 当队列满的时候,返回True,否则返回False (不可靠) q.put(item, block=True, timeout=None) # 将item放入Queue尾部,item必须存在,可以参数block默认为True,表示当队列满时,会等待队列给出可用位置, 为False时为非阻塞,此时如果队列已满,会引发queue.Full 异常。 可选参数timeout,表示 会阻塞设置的时间,过后, 如果队列无法给出放入item的位置,则引发 queue.Full 异常 q.get(block=True, timeout=None) # 移除并返回队列头部的一个值,可选参数block默认为True,表示获取值的时候,如果队列为空,则阻塞,为False时,不阻塞, 若此时队列为空,则引发 queue.Empty异常。 可选参数timeout,表示会阻塞设置的时候,过后,如果队列为空,则引发Empty异常。 q.put_nowait(item) # 等效于 put(item,block=False) q.get_nowait() # 等效于 get(item,block=False)
代码如下:
#!/usr/bin/env python import Queue import threading message = Queue.Queue(10) def producer(i): while True: message.put(i) def consumer(i): while True: msg = message.get() for i in range(12): t = threading.Thread(target=producer, args=(i,)) t.start() for i in range(10): t = threading.Thread(target=consumer, args=(i,)) t.start()
那就自己做个线程池吧:
# 简单往队列中传输线程数 import threading import time import queue class Threadingpool(): def __init__(self,max_num = 10): self.queue = queue.Queue(max_num) for i in range(max_num): self.queue.put(threading.Thread) def getthreading(self): return self.queue.get() def addthreading(self): self.queue.put(threading.Thread) def func(p,i): time.sleep(1) print(i) p.addthreading() if __name__ == "__main__": p = Threadingpool() for i in range(20): thread = p.getthreading() t = thread(target = func, args = (p,i)) t.start()
#往队列中无限添加任务 import queue import threading import contextlib import time StopEvent = object() class ThreadPool(object): def __init__(self, max_num): self.q = queue.Queue() self.max_num = max_num self.terminal = False self.generate_list = [] self.free_list = [] def run(self, func, args, callback=None): """ 线程池执行一个任务 :param func: 任务函数 :param args: 任务函数所需参数 :param callback: 任务执行失败或成功后执行的回调函数,回调函数有两个参数1、任务函数执行状态;2、任务函数返回值(默认为None,即:不执行回调函数) :return: 如果线程池已经终止,则返回True否则None """ if len(self.free_list) == 0 and len(self.generate_list) < self.max_num: self.generate_thread() w = (func, args, callback,) self.q.put(w) def generate_thread(self): """ 创建一个线程 """ t = threading.Thread(target=self.call) t.start() def call(self): """ 循环去获取任务函数并执行任务函数 """ current_thread = threading.currentThread self.generate_list.append(current_thread) event = self.q.get() # 获取线程 while event != StopEvent: # 判断获取的线程数不等于全局变量 func, arguments, callback = event # 拆分元祖,获得执行函数,参数,回调函数 try: result = func(*arguments) # 执行函数 status = True except Exception as e: # 函数执行失败 status = False result = e if callback is not None: try: callback(status, result) except Exception as e: pass # self.free_list.append(current_thread) # event = self.q.get() # self.free_list.remove(current_thread) with self.work_state(): event = self.q.get() else: self.generate_list.remove(current_thread) def close(self): """ 关闭线程,给传输全局非元祖的变量来进行关闭 :return: """ for i in range(len(self.generate_list)): self.q.put(StopEvent) def terminate(self): """ 突然关闭线程 :return: """ self.terminal = True while self.generate_list: self.q.put(StopEvent) self.q.empty() @contextlib.contextmanager def work_state(self): self.free_list.append(threading.currentThread) try: yield finally: self.free_list.remove(threading.currentThread) def work(i): print(i) return i +1 # 返回给回调函数 def callback(ret): print(ret) pool = ThreadPool(10) for item in range(50): pool.run(func=work, args=(item,),callback=callback) pool.terminate() # pool.close()
python 进程
multiprocessing是python的多进程管理包,和threading.Thread类似。
1、multiprocessing模块
直接从侧面用subprocesses替换线程使用GIL的方式,由于这一点,multiprocessing模块可以让程序员在给定的机器上充分的利用CPU。在multiprocessing中,通过创建Process对象生成进程,然后调用它的start()方法,
from multiprocessing import Process def func(name): print('hello', name) if __name__ == "__main__": p = Process(target=func,args=('zhangyanlin',)) p.start() p.join() # 等待进程执行完毕
在使用并发设计的时候最好尽可能的避免共享数据,尤其是在使用多进程的时候。 如果你真有需要 要共享数据, multiprocessing提供了两种方式。
(1)multiprocessing,Array,Value
数据可以用Value或Array存储在一个共享内存地图里,如下:
from multiprocessing import Array,Value,Process def func(a,b): a.value = 3.333333333333333 for i in range(len(b)): b[i] = -b[i] if __name__ == "__main__": num = Value('d',0.0) arr = Array('i',range(11)) c = Process(target=func,args=(num,arr)) d= Process(target=func,args=(num,arr)) c.start() d.start() c.join() d.join() print(num.value) for i in arr: print(i) 输出: 3.1415927 [0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
创建num和arr时,“d”和“i”参数由Array模块使用的typecodes创建:“d”表示一个双精度的浮点数,“i”表示一个有符号的整数,这些共享对象将被线程安全的处理。
Array(‘i’, range(10))中的‘i’参数:
‘c’: ctypes.c_char ‘u’: ctypes.c_wchar ‘b’: ctypes.c_byte ‘B’: ctypes.c_ubyte ‘h’: ctypes.c_short ‘H’: ctypes.c_ushort ‘i’: ctypes.c_int ‘I’: ctypes.c_uint ‘l’: ctypes.c_long, ‘L’: ctypes.c_ulong ‘f’: ctypes.c_float ‘d’: ctypes.c_double
(2)multiprocessing,Manager
由Manager()返回的manager提供list, dict, Namespace, Lock, RLock, Semaphore, BoundedSemaphore, Condition, Event, Barrier, Queue, Value and Array类型的支持。
from multiprocessing import Process,Manager def f(d,l): d["name"] = "zhangyanlin" d["age"] = 18 d["Job"] = "pythoner" l.reverse() if __name__ == "__main__": with Manager() as man: d = man.dict() l = man.list(range(10)) p = Process(target=f,args=(d,l)) p.start() p.join() print(d) print(l) 输出: {0.25: None, 1: '1', '2': 2} [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
Server process manager比 shared memory 更灵活,因为它可以支持任意的对象类型。另外,一个单独的manager可以通过进程在网络上不同的计算机之间共享,不过他比shared memory要慢。
2、进程池(Using a pool of workers)
Pool类描述了一个工作进程池,他有几种不同的方法让任务卸载工作进程。
进程池内部维护一个进程序列,当使用时,则去进程池中获取一个进程,如果进程池序列中没有可供使用的进进程,那么程序就会等待,直到进程池中有可用进程为止。
我们可以用Pool类创建一个进程池, 展开提交的任务给进程池。 例:
#apply from multiprocessing import Pool import time def f1(i): time.sleep(0.5) print(i) return i + 100 if __name__ == "__main__": pool = Pool(5) for i in range(1,31): pool.apply(func=f1,args=(i,)) #apply_async def f1(i): time.sleep(0.5) print(i) return i + 100 def f2(arg): print(arg) if __name__ == "__main__": pool = Pool(5) for i in range(1,31): pool.apply_async(func=f1,args=(i,),callback=f2) pool.close() pool.join()
一个进程池对象可以控制工作进程池的哪些工作可以被提交,它支持超时和回调的异步结果,有一个类似map的实现。
- processes :使用的工作进程的数量,如果processes是None那么使用 os.cpu_count()返回的数量。
- initializer: 如果initializer是None,那么每一个工作进程在开始的时候会调用initializer(*initargs)。
- maxtasksperchild:工作进程退出之前可以完成的任务数,完成后用一个心的工作进程来替代原进程,来让闲置的资源被释放。maxtasksperchild默认是None,意味着只要Pool存在工作进程就会一直存活。
- context: 用在制定工作进程启动时的上下文,一般使用 multiprocessing.Pool() 或者一个context对象的Pool()方法来创建一个池,两种方法都适当的设置了context
注意:Pool对象的方法只可以被创建pool的进程所调用。
New in version 3.2: maxtasksperchild
New in version 3.4: context
进程池的方法
-
apply(func[, args[, kwds]]) :使用arg和kwds参数调用func函数,结果返回前会一直阻塞,由于这个原因,apply_async()更适合并发执行,另外,func函数仅被pool中的一个进程运行。
-
apply_async(func[, args[, kwds[, callback[, error_callback]]]]) : apply()方法的一个变体,会返回一个结果对象。如果callback被指定,那么callback可以接收一个参数然后被调用,当结果准备好回调时会调用callback,调用失败时,则用error_callback替换callback。 Callbacks应被立即完成,否则处理结果的线程会被阻塞。
-
close() : 阻止更多的任务提交到pool,待任务完成后,工作进程会退出。
-
terminate() : 不管任务是否完成,立即停止工作进程。在对pool对象进程垃圾回收的时候,会立即调用terminate()。
-
join() : wait工作线程的退出,在调用join()前,必须调用close() or terminate()。这样是因为被终止的进程需要被父进程调用wait(join等价与wait),否则进程会成为僵尸进程。
-
map(func, iterable[, chunksize])¶
-
map_async(func, iterable[, chunksize[, callback[, error_callback]]])¶
-
imap(func, iterable[, chunksize])¶
-
imap_unordered(func, iterable[, chunksize])
-
starmap(func, iterable[, chunksize])¶
-
starmap_async(func, iterable[, chunksize[, callback[, error_back]]])
python 协程
线程和进程的操作是由程序触发系统接口,最后的执行者是系统;协程的操作则是程序员。
协程存在的意义:对于多线程应用,CPU通过切片的方式来切换线程间的执行,线程切换时需要耗时(保存状态,下次继续)。协程,则只使用一个线程,在一个线程中规定某个代码块执行顺序。
协程的适用场景:当程序中存在大量不需要CPU的操作时(IO),适用于协程;
event loop是协程执行的控制点, 如果你希望执行协程, 就需要用到它们。
event loop提供了如下的特性:
- 注册、执行、取消延时调用(异步函数)
- 创建用于通信的client和server协议(工具)
- 创建和别的程序通信的子进程和协议(工具)
- 把函数调用送入线程池中
协程示例:
import asyncio async def cor1(): print("COR1 start") await cor2() print("COR1 end") async def cor2(): print("COR2") loop = asyncio.get_event_loop() loop.run_until_complete(cor1()) loop.close()
最后三行是重点。
- asyncio.get_event_loop() : asyncio启动默认的event loop
- run_until_complete() : 这个函数是阻塞执行的,知道所有的异步函数执行完成,
- close() : 关闭event loop。
1、greenlet
import greenlet def fun1(): print("12") gr2.switch() print("56") gr2.switch() def fun2(): print("34") gr1.switch() print("78") gr1 = greenlet.greenlet(fun1) gr2 = greenlet.greenlet(fun2) gr1.switch()
2、gevent
gevent属于第三方模块需要下载安装包
-
pip3 install --upgrade pip3
- pip3 install gevent
import gevent def fun1(): print("www.baidu.com") # 第一步 gevent.sleep(0) print("end the baidu.com") # 第三步 def fun2(): print("www.zhihu.com") # 第二步 gevent.sleep(0) print("end th zhihu.com") # 第四步 gevent.joinall([ gevent.spawn(fun1), gevent.spawn(fun2), ])
遇到IO操作自动切换:
import gevent import requests def func(url): print("get: %s"%url) gevent.sleep(0) date =requests.get(url) ret = date.text print(url,len(ret)) gevent.joinall([ gevent.spawn(func, 'https://www.python.org/'), gevent.spawn(func, 'https://www.yahoo.com/'), gevent.spawn(func, 'https://github.com/'), ])