线程,进程,协程

 

python 线程

 

Threading用于提供线程相关的操作,线程是应用程序中工作的最小单元。

1、threading模块

threading 模块建立在 _thread 模块之上。thread 模块以低级、原始的方式来处理和控制线程,而 threading 模块通过对 thread 进行二次封装,提供了更方便的 api 来处理线程。

import threading
import time
 
def worker(num):
    """
    thread worker function
    :return:
    """
    time.sleep(1)
    print("The num is  %d" % num)
    return
 
for i in range(20):
    t = threading.Thread(target=worker,args=(i,),name=“t.%d” % i)
    t.start()
View Code

 

上述代码创建了20个“前台”线程,然后控制器就交给了CPU,CPU根据指定算法进行调度,分片执行指令。

Thread方法说明

t.start() : 激活线程,

t.getName() : 获取线程的名称

t.setName() : 设置线程的名称 

t.name : 获取或设置线程的名称

t.is_alive() : 判断线程是否为激活状态

t.isAlive() :判断线程是否为激活状态

t.setDaemon() 设置为后台线程或前台线程(默认:False);通过一个布尔值设置线程是否为守护线程,必须在执行start()方法之后才可以使用。如果是后台线程,主线程执行过程中,后台线程也在进行,主线程执行完毕后,后台线程不论成功与否,均停止;如果是前台线程,主线程执行过程中,前台线程也在进行,主线程执行完毕后,等待前台线程也执行完成后,程序停止

t.isDaemon() : 判断是否为守护线程

t.ident :获取线程的标识符。线程标识符是一个非零整数,只有在调用了start()方法之后该属性才有效,否则它只返回None。

t.join() :逐个执行每个线程,执行完毕后继续往下执行,该方法使得多线程变得无意义

t.run() :线程被cpu调度后自动执行线程对象的run方法

2、线程锁threading.RLock和threading.Lock

由于线程之间是进行随机调度,并且每个线程可能只执行n条执行之后,CPU接着执行其他线程。为了保证数据的准确性,引入了锁的概念。所以,可能出现如下问题:

例:假设列表A的所有元素就为0,当一个线程从前向后打印列表的所有元素,另外一个线程则从后向前修改列表的元素为1,那么输出的时候,列表的元素就会一部分为0,一部分为1,这就导致了数据的不一致。锁的出现解决了这个问题。

 

import threading
import time
 
globals_num = 0
 
lock = threading.RLock()
 
def Func():
    lock.acquire()  # 获得锁 
    global globals_num
    globals_num += 1
    time.sleep(1)
    print(globals_num)
    lock.release()  # 释放锁 
 
for i in range(10):
    t = threading.Thread(target=Func)
    t.start()
View Code

 

3、threading.RLock和threading.Lock 的区别

RLock允许在同一线程中被多次acquire。而Lock却不允许这种情况。 如果使用RLock,那么acquire和release必须成对出现,即调用了n次acquire,必须调用n次的release才能真正释放所占用的琐。

 

import threading
lock = threading.Lock()    #Lock对象
lock.acquire()
lock.acquire()  #产生了死琐。
lock.release()
lock.release() 

import threading
rLock = threading.RLock()  #RLock对象
rLock.acquire()
rLock.acquire()    #在同一线程内,程序不会堵塞。
rLock.release()
rLock.release()
View Code

 

4、threading.Event

python线程的事件用于主线程控制其他线程的执行,事件主要提供了三个方法 set、wait、clear。

事件处理的机制:全局定义了一个“Flag”,如果“Flag”值为 False,那么当程序执行 event.wait 方法时就会阻塞,如果“Flag”值为True,那么event.wait 方法时便不再阻塞。

  • clear:将“Flag”设置为False
  • set:将“Flag”设置为True
  • Event.isSet() :判断标识位是否为Ture。

 

import threading
 
def do(event):
    print('start')
    event.wait()
    print('execute')
 
event_obj = threading.Event()
for i in range(10):
    t = threading.Thread(target=do, args=(event_obj,))
    t.start()
 
event_obj.clear()
inp = input('input:')
if inp == 'true':
    event_obj.set()
View Code

 

 

当线程执行的时候,如果flag为False,则线程会阻塞,当flag为True的时候,线程不会阻塞。它提供了本地和远程的并发性。

5、threading.Condition

一个condition变量总是与某些类型的锁相联系,这个可以使用默认的情况或创建一个,当几个condition变量必须共享和同一个锁的时候,是很有用的。锁是conditon对象的一部分:没有必要分别跟踪。

condition变量服从上下文管理协议:with语句块封闭之前可以获取与锁的联系。 acquire() 和 release() 会调用与锁相关联的相应的方法。

其他和锁关联的方法必须被调用,wait()方法会释放锁,当另外一个线程使用 notify() or notify_all()唤醒它之前会一直阻塞。一旦被唤醒,wait()会重新获得锁并返回,

Condition类实现了一个conditon变量。 这个conditiaon变量允许一个或多个线程等待,直到他们被另一个线程通知。 如果lock参数,被给定一个非空的值,,那么他必须是一个lock或者Rlock对象,它用来做底层锁。否则,会创建一个新的Rlock对象,用来做底层锁。

  • wait(timeout=None) : 等待通知,或者等到设定的超时时间。当调用这wait()方法时,如果调用它的线程没有得到锁,那么会抛出一个RuntimeError 异常。 wati()释放锁以后,在被调用相同条件的另一个进程用notify() or notify_all() 叫醒之前 会一直阻塞。wait() 还可以指定一个超时时间。

如果有等待的线程,notify()方法会唤醒一个在等待conditon变量的线程。notify_all() 则会唤醒所有在等待conditon变量的线程。

注意: notify()和notify_all()不会释放锁,也就是说,线程被唤醒后不会立刻返回他们的wait() 调用。除非线程调用notify()和notify_all()之后放弃了锁的所有权。

 

在典型的设计风格里,利用condition变量用锁去通许访问一些共享状态,线程在获取到它想得到的状态前,会反复调用wait()。修改状态的线程在他们状态改变时调用 notify() or notify_all(),用这种方式,线程会尽可能的获取到想要的一个等待者状态。 例子: 生产者-消费者模型,

 

import threading
import time
def consumer(cond):
    with cond:
        print("consumer before wait")
        cond.wait()
        print("consumer after wait")
 
def producer(cond):
    with cond:
        print("producer before notifyAll")
        cond.notifyAll()
        print("producer after notifyAll")
 
condition = threading.Condition()
c1 = threading.Thread(name="c1", target=consumer, args=(condition,))
c2 = threading.Thread(name="c2", target=consumer, args=(condition,))
 
p = threading.Thread(name="p", target=producer, args=(condition,))
 
c1.start()
time.sleep(2)
c2.start()
time.sleep(2)
p.start()
View Code

 

 

6、queue模块

Queue 就是对队列,它是线程安全的

举例来说,我们去麦当劳吃饭。饭店里面有厨师职位,前台负责把厨房做好的饭卖给顾客,顾客则去前台领取做好的饭。这里的前台就相当于我们的队列。形成管道样,厨师做好饭通过前台传送给顾客,所谓单向队列

这个模型也叫生产者-消费者模型。

 

import queue

q = queue.Queue(maxsize=0)  # 构造一个先进显出队列,maxsize指定队列长度,为0 时,表示队列长度无限制。

q.join()    # 等到队列为kong的时候,在执行别的操作
q.qsize()   # 返回队列的大小 (不可靠)
q.empty()   # 当队列为空的时候,返回True 否则返回False (不可靠)
q.full()    # 当队列满的时候,返回True,否则返回False (不可靠)
q.put(item, block=True, timeout=None) #  将item放入Queue尾部,item必须存在,可以参数block默认为True,表示当队列满时,会等待队列给出可用位置,
                         为False时为非阻塞,此时如果队列已满,会引发queue.Full 异常。 可选参数timeout,表示 会阻塞设置的时间,过后,
                          如果队列无法给出放入item的位置,则引发 queue.Full 异常
q.get(block=True, timeout=None) #   移除并返回队列头部的一个值,可选参数block默认为True,表示获取值的时候,如果队列为空,则阻塞,为False时,不阻塞,
                      若此时队列为空,则引发 queue.Empty异常。 可选参数timeout,表示会阻塞设置的时候,过后,如果队列为空,则引发Empty异常。
q.put_nowait(item) #   等效于 put(item,block=False)
q.get_nowait() #    等效于 get(item,block=False)
View Code

 

代码如下:

 

#!/usr/bin/env python
import Queue
import threading


message = Queue.Queue(10)


def producer(i):
    while True:
        message.put(i)


def consumer(i):
    while True:
        msg = message.get()


for i in range(12):
    t = threading.Thread(target=producer, args=(i,))
    t.start()

for i in range(10):
    t = threading.Thread(target=consumer, args=(i,))
    t.start()
View Code

 

 

那就自己做个线程池吧:

# 简单往队列中传输线程数
import threading
import time
import queue

class Threadingpool():
    def __init__(self,max_num = 10):
        self.queue = queue.Queue(max_num)
        for i in range(max_num):
            self.queue.put(threading.Thread)

    def getthreading(self):
        return self.queue.get()

    def addthreading(self):
        self.queue.put(threading.Thread)


def func(p,i):
    time.sleep(1)
    print(i)
    p.addthreading()


if __name__ == "__main__":
    p = Threadingpool()
    for i in range(20):
        thread = p.getthreading()
        t = thread(target = func, args = (p,i))
        t.start()
线程池一
#往队列中无限添加任务
import queue
import threading
import contextlib
import time

StopEvent = object()


class ThreadPool(object):

    def __init__(self, max_num):
        self.q = queue.Queue()
        self.max_num = max_num

        self.terminal = False
        self.generate_list = []
        self.free_list = []

    def run(self, func, args, callback=None):
        """
        线程池执行一个任务
        :param func: 任务函数
        :param args: 任务函数所需参数
        :param callback: 任务执行失败或成功后执行的回调函数,回调函数有两个参数1、任务函数执行状态;2、任务函数返回值(默认为None,即:不执行回调函数)
        :return: 如果线程池已经终止,则返回True否则None
        """

        if len(self.free_list) == 0 and len(self.generate_list) < self.max_num:
            self.generate_thread()
        w = (func, args, callback,)
        self.q.put(w)

    def generate_thread(self):
        """
        创建一个线程
        """
        t = threading.Thread(target=self.call)
        t.start()

    def call(self):
        """
        循环去获取任务函数并执行任务函数
        """
        current_thread = threading.currentThread
        self.generate_list.append(current_thread)

        event = self.q.get()  # 获取线程
        while event != StopEvent:   # 判断获取的线程数不等于全局变量

            func, arguments, callback = event   # 拆分元祖,获得执行函数,参数,回调函数
            try:
                result = func(*arguments)   # 执行函数
                status = True
            except Exception as e:    # 函数执行失败
                status = False
                result = e

            if callback is not None:
                try:
                    callback(status, result)
                except Exception as e:
                    pass

            # self.free_list.append(current_thread)
            # event = self.q.get()
            # self.free_list.remove(current_thread)
            with self.work_state():
                event = self.q.get()
        else:
            self.generate_list.remove(current_thread)

    def close(self):
        """
        关闭线程,给传输全局非元祖的变量来进行关闭
        :return:
        """
        for i in range(len(self.generate_list)):
            self.q.put(StopEvent)

    def terminate(self):
        """
        突然关闭线程
        :return:
        """
        self.terminal = True
        while self.generate_list:
            self.q.put(StopEvent)
        self.q.empty()

    @contextlib.contextmanager
    def work_state(self):
        self.free_list.append(threading.currentThread)
        try:
            yield
        finally:
            self.free_list.remove(threading.currentThread)




def work(i):
    print(i)
    return i +1 # 返回给回调函数

def callback(ret):
    print(ret)

pool = ThreadPool(10)
for item in range(50):
    pool.run(func=work, args=(item,),callback=callback)

pool.terminate()
# pool.close()
线程池二

 

 

python 进程

 

multiprocessing是python的多进程管理包,和threading.Thread类似。

1、multiprocessing模块

直接从侧面用subprocesses替换线程使用GIL的方式,由于这一点,multiprocessing模块可以让程序员在给定的机器上充分的利用CPU。在multiprocessing中,通过创建Process对象生成进程,然后调用它的start()方法,

 

from multiprocessing import Process

def func(name):
    print('hello', name)


if __name__ == "__main__":
    p = Process(target=func,args=('zhangyanlin',))
    p.start()
    p.join()  # 等待进程执行完毕
多进程

 

 

在使用并发设计的时候最好尽可能的避免共享数据,尤其是在使用多进程的时候。 如果你真有需要 要共享数据, multiprocessing提供了两种方式。

(1)multiprocessing,Array,Value

数据可以用Value或Array存储在一个共享内存地图里,如下:

 

from multiprocessing import Array,Value,Process

def func(a,b):
    a.value = 3.333333333333333
    for i in range(len(b)):
        b[i] = -b[i]


if __name__ == "__main__":
    num = Value('d',0.0)
    arr = Array('i',range(11))


    c = Process(target=func,args=(num,arr))
    d= Process(target=func,args=(num,arr))
    c.start()
    d.start()
    c.join()
    d.join()

    print(num.value)
    for i in arr:
        print(i)
输出:
  3.1415927
  [0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
View Code

 

创建num和arr时,“d”和“i”参数由Array模块使用的typecodes创建:“d”表示一个双精度的浮点数,“i”表示一个有符号的整数,这些共享对象将被线程安全的处理。

Array(‘i’, range(10))中的‘i’参数:

 

‘c’: ctypes.c_char     ‘u’: ctypes.c_wchar    ‘b’: ctypes.c_byte     ‘B’: ctypes.c_ubyte
‘h’: ctypes.c_short     ‘H’: ctypes.c_ushort    ‘i’: ctypes.c_int      ‘I’: ctypes.c_uint
‘l’: ctypes.c_long,    ‘L’: ctypes.c_ulong    ‘f’: ctypes.c_float    ‘d’: ctypes.c_double

 

(2)multiprocessing,Manager

由Manager()返回的manager提供list, dict, Namespace, Lock, RLock, Semaphore, BoundedSemaphore, Condition, Event, Barrier, Queue, Value and Array类型的支持

 

from multiprocessing import Process,Manager
def f(d,l):
    d["name"] = "zhangyanlin"
    d["age"] = 18
    d["Job"] = "pythoner"
    l.reverse()

if __name__ == "__main__":
    with Manager() as man:
        d = man.dict()
        l = man.list(range(10))

        p = Process(target=f,args=(d,l))
        p.start()
        p.join()

        print(d)
        print(l)

输出:
  {0.25: None, 1: '1', '2': 2}
  [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
View Code

 

 

Server process manager比 shared memory 更灵活,因为它可以支持任意的对象类型。另外,一个单独的manager可以通过进程在网络上不同的计算机之间共享,不过他比shared memory要慢。

2、进程池(Using a pool of workers)

Pool类描述了一个工作进程池,他有几种不同的方法让任务卸载工作进程。

进程池内部维护一个进程序列,当使用时,则去进程池中获取一个进程,如果进程池序列中没有可供使用的进进程,那么程序就会等待,直到进程池中有可用进程为止。

我们可以用Pool类创建一个进程池, 展开提交的任务给进程池。 例:

 

#apply
from  multiprocessing import Pool
import time

def f1(i):
    time.sleep(0.5)
    print(i)
    return i + 100

if __name__ == "__main__":
    pool = Pool(5)
    for i in range(1,31):
        pool.apply(func=f1,args=(i,))

#apply_async
def f1(i):
    time.sleep(0.5)
    print(i)
    return i + 100
def f2(arg):
    print(arg)

if __name__ == "__main__":
    pool = Pool(5)
    for i in range(1,31):
        pool.apply_async(func=f1,args=(i,),callback=f2)
    pool.close()
    pool.join()

 

一个进程池对象可以控制工作进程池的哪些工作可以被提交,它支持超时和回调的异步结果,有一个类似map的实现。

  • processes :使用的工作进程的数量,如果processes是None那么使用 os.cpu_count()返回的数量。
  • initializer: 如果initializer是None,那么每一个工作进程在开始的时候会调用initializer(*initargs)。
  • maxtasksperchild:工作进程退出之前可以完成的任务数,完成后用一个心的工作进程来替代原进程,来让闲置的资源被释放。maxtasksperchild默认是None,意味着只要Pool存在工作进程就会一直存活。
  • context: 用在制定工作进程启动时的上下文,一般使用 multiprocessing.Pool() 或者一个context对象的Pool()方法来创建一个池,两种方法都适当的设置了context

注意:Pool对象的方法只可以被创建pool的进程所调用。

New in version 3.2: maxtasksperchild

New in version 3.4: context

 

进程池的方法

  • apply(func[, args[, kwds]]) :使用arg和kwds参数调用func函数,结果返回前会一直阻塞,由于这个原因,apply_async()更适合并发执行,另外,func函数仅被pool中的一个进程运行。

  • apply_async(func[, args[, kwds[, callback[, error_callback]]]]) : apply()方法的一个变体,会返回一个结果对象。如果callback被指定,那么callback可以接收一个参数然后被调用,当结果准备好回调时会调用callback,调用失败时,则用error_callback替换callback。 Callbacks应被立即完成,否则处理结果的线程会被阻塞。

  • close() : 阻止更多的任务提交到pool,待任务完成后,工作进程会退出。

  • terminate() : 不管任务是否完成,立即停止工作进程。在对pool对象进程垃圾回收的时候,会立即调用terminate()。

  • join() : wait工作线程的退出,在调用join()前,必须调用close() or terminate()。这样是因为被终止的进程需要被父进程调用wait(join等价与wait),否则进程会成为僵尸进程。

  • map(func, iterable[, chunksize])¶

  • map_async(func, iterable[, chunksize[, callback[, error_callback]]])¶

  • imap(func, iterable[, chunksize])¶

  • imap_unordered(func, iterable[, chunksize])

  • starmap(func, iterable[, chunksize])¶

  • starmap_async(func, iterable[, chunksize[, callback[, error_back]]])

python 协程

 

线程和进程的操作是由程序触发系统接口,最后的执行者是系统;协程的操作则是程序员。

协程存在的意义:对于多线程应用,CPU通过切片的方式来切换线程间的执行,线程切换时需要耗时(保存状态,下次继续)。协程,则只使用一个线程,在一个线程中规定某个代码块执行顺序。

协程的适用场景:当程序中存在大量不需要CPU的操作时(IO),适用于协程;

event loop是协程执行的控制点, 如果你希望执行协程, 就需要用到它们。

event loop提供了如下的特性:

  • 注册、执行、取消延时调用(异步函数)
  • 创建用于通信的client和server协议(工具)
  • 创建和别的程序通信的子进程和协议(工具)
  • 把函数调用送入线程池中

协程示例:

 

import asyncio
 
async def cor1():
    print("COR1 start")
    await cor2()
    print("COR1 end")
 
async def cor2():
    print("COR2")
 
loop = asyncio.get_event_loop()
loop.run_until_complete(cor1())
loop.close()

 

最后三行是重点。

  • asyncio.get_event_loop()  : asyncio启动默认的event loop 
  • run_until_complete()  :  这个函数是阻塞执行的,知道所有的异步函数执行完成,
  • close()  :  关闭event loop。

1、greenlet

 

import greenlet


def fun1():
    print("12")
    gr2.switch()
    print("56")
    gr2.switch()

def fun2():
    print("34")
    gr1.switch()
    print("78")


gr1 = greenlet.greenlet(fun1)
gr2 = greenlet.greenlet(fun2)
gr1.switch()

 

2、gevent

gevent属于第三方模块需要下载安装包

  • pip3 install --upgrade pip3

  • pip3 install gevent

 

import gevent

def fun1():
    print("www.baidu.com")   # 第一步
    gevent.sleep(0)
    print("end the baidu.com")  # 第三步

def fun2():
    print("www.zhihu.com")   # 第二步
    gevent.sleep(0)
    print("end th zhihu.com")  # 第四步

gevent.joinall([
    gevent.spawn(fun1),
    gevent.spawn(fun2),
])

 

遇到IO操作自动切换:

import gevent
import requests


def func(url):
    print("get: %s"%url)
    gevent.sleep(0)
    date =requests.get(url)
    ret = date.text
    print(url,len(ret))

gevent.joinall([
    gevent.spawn(func, 'https://www.python.org/'),
    gevent.spawn(func, 'https://www.yahoo.com/'),
    gevent.spawn(func, 'https://github.com/'),
])
View Code

 

 
 
 
posted @ 2019-09-12 23:13  王军的个人博客  阅读(158)  评论(0编辑  收藏  举报