打赏

星辰大海ゞ

That which does not kill us makes us stronger!

导航

Redis监控方案

Redis介绍

Redis是一种高级key-value数据库。它跟memcached类似,不过数据可以持久化,而且支持的数据类型很丰富。有字符串,链表、哈希、集合和有序集合5种。支持在服务器端计算集合的并、交和补集(difference)等,还支持多种排序功能。所以Redis也可以被看成是一个数据结构服务器。Redis的所有数据都是保存在内存中,然后不定期的通过异步方式保存到磁盘上(这称为“半持久化模式”);也可以把每一次数据变化都写入到一个append only file(aof)里面(这称为“全持久化模式”)。

Redis监控

首先判断客户端和服务器连接是否正常

1
2
3
4
5
6
7
# 客户端和服务器连接正常,返回PONG
redis> PING
PONG
 
# 客户端和服务器连接不正常(网络不正常或服务器未能正常运行),返回连接异常
redis 127.0.0.1:6379> PING
Could not connect to Redis at 127.0.0.1:6379: Connection refused

Redis 监控最直接的方法就是使用系统提供的 info 命令,只需要执行下面一条命令,就能获得 Redis 系统的状态报告。

1
redis-cli info

结果会返回 Server、Clients、Memory、Persistence、Stats、Replication、CPU、Keyspace 8个部分。从info大返回结果中提取相关信息,就可以达到有效监控的目的。

先解释下各个参数含义

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
# Server
redis_version:2.8.8                     # Redis 的版本
redis_git_sha1:00000000
redis_git_dirty:0
redis_build_id:bf5d1747be5380f
redis_mode:standalone
os:Linux 2.6.32-220.7.1.el6.x86_64 x86_64
arch_bits:64
multiplexing_api:epoll
gcc_version:4.4.7                       #gcc版本
process_id:49324                        # 当前 Redis 服务器进程id
run_id:bbd7b17efcf108fdde285d8987e50392f6a38f48
tcp_port:6379
uptime_in_seconds:1739082               # 运行时间(秒)
uptime_in_days:20                       # 运行时间(天)
hz:10
lru_clock:1734729
config_file:/home/s/apps/RedisMulti_video_so/conf/zzz.conf
 
# Clients
connected_clients:1                     #连接的客户端数量
client_longest_output_list:0
client_biggest_input_buf:0
blocked_clients:0
 
# Memory
used_memory:821848                       #Redis分配的内存总量             
used_memory_human:802.59K
used_memory_rss:85532672                 #Redis分配的内存总量(包括内存碎片)
used_memory_peak:178987632
used_memory_peak_human:170.70M           #Redis所用内存的高峰值
used_memory_lua:33792
mem_fragmentation_ratio:104.07           #内存碎片比率
mem_allocator:tcmalloc-2.0
 
# Persistence
loading:0
rdb_changes_since_last_save:0            #上次保存数据库之后,执行命令的次数
rdb_bgsave_in_progress:0                 #后台进行中的 save 操作的数量
rdb_last_save_time:1410848505            #最后一次成功保存的时间点,以 UNIX 时间戳格式显示
rdb_last_bgsave_status:ok
rdb_last_bgsave_time_sec:0
rdb_current_bgsave_time_sec:-1
aof_enabled:0                            #redis是否开启了aof
aof_rewrite_in_progress:0
aof_rewrite_scheduled:0
aof_last_rewrite_time_sec:-1
aof_current_rewrite_time_sec:-1
aof_last_bgrewrite_status:ok
aof_last_write_status:ok
 
# Stats
total_connections_received:5705          #运行以来连接过的客户端的总数量
total_commands_processed:204013          # 运行以来执行过的命令的总数量
instantaneous_ops_per_sec:0
rejected_connections:0
sync_full:0
sync_partial_ok:0
sync_partial_err:0
expired_keys:34401                       #运行以来过期的 key 的数量
evicted_keys:0                           #运行以来删除过的key的数量
keyspace_hits:2129                       #命中key 的次数
keyspace_misses:3148                     #没命中key 的次数
pubsub_channels:0                        #当前使用中的频道数量
pubsub_patterns:0                        #当前使用中的模式数量
latest_fork_usec:4391
 
# Replication
role:master                              #当前实例的角色master还是slave
connected_slaves:0
master_repl_offset:0
repl_backlog_active:0
repl_backlog_size:1048576
repl_backlog_first_byte_offset:0
repl_backlog_histlen:0
 
# CPU
used_cpu_sys:1551.61
used_cpu_user:1083.37
used_cpu_sys_children:2.52
used_cpu_user_children:16.79
 
# Keyspace
db0:keys=3,expires=0,avg_ttl=0             #各个数据库的 key 的数量,以及带有生存期的 key 的数量

内存使用

如果 Redis 使用的内存超出了可用的物理内存大小,那么 Redis 很可能系统会被杀掉。针对这一点,你可以通过 info 命令对 used_memory 和 used_memory_peak 进行监控,为使用内存量设定阀值,并设定相应的报警机制。当然,报警只是手段,重要的是你得预先计划好,当内存使用量过大后,你应该做些什么,是清除一些没用的冷数据,还是把 Redis 迁移到更强大的机器上去。

持久化

如果因为你的机器或 Redis 本身的问题导致 Redis 崩溃了,那么你唯一的救命稻草可能就是 dump 出来的rdb文件了,所以,对 Redis dump 文件进行监控也是很重要的。可以通过对rdb_last_save_time 进行监控,了解最近一次 dump 数据操作的时间,还可以通过对rdb_changes_since_last_save进行监控来获得如果这时候出现故障,会丢失(即已改变)多少数据。

Keys

通过获取Keyspace中的结果得到各个数据库中key的数量

QPS

即每分钟执行的命令个数,即:(total_commands_processed2-total_commands_processed1)/span,为了实时得到QPS,可以设定脚本在后台运行,记录过去几分钟的total_commands_processed。在计算QPS时,利用过去的信息和当前的信息得出QPS的估计值。

参考

redis info命令中各个参数的含义

 

posted on 2015-10-09 18:49  星辰大海ゞ  阅读(256)  评论(0编辑  收藏  举报