高精度计算模板 -感谢acwing
高精度加
1 // C = A + B, A >= 0, B >= 0 2 vector<int> add(vector<int> &A, vector<int> &B) 3 { 4 if (A.size() < B.size()) return add(B, A); 5 6 vector<int> C; 7 int t = 0; 8 for (int i = 0; i < A.size(); i ++ ) 9 { 10 t += A[i]; 11 if (i < B.size()) t += B[i]; 12 C.push_back(t % 10); 13 t /= 10; 14 } 15 16 if (t) C.push_back(t); 17 return C; 18 }
高精度减
// C = A - B, 满足A >= B, A >= 0, B >= 0 vector<int> sub(vector<int> &A, vector<int> &B) { vector<int> C; for (int i = 0, t = 0; i < A.size(); i ++ ) { t = A[i] - t; if (i < B.size()) t -= B[i]; C.push_back((t + 10) % 10); if (t < 0) t = 1; else t = 0; } while (C.size() > 1 && C.back() == 0) C.pop_back(); return C; }
高精度乘
// C = A * b, A >= 0, b >= 0 vector<int> mul(vector<int> &A, int b) { vector<int> C; int t = 0; for (int i = 0; i < A.size() || t; i ++ ) { if (i < A.size()) t += A[i] * b; C.push_back(t % 10); t /= 10; } while (C.size() > 1 && C.back() == 0) C.pop_back(); return C; }
高精度除
// A / b = C ... r, A >= 0, b > 0 vector<int> div(vector<int> &A, int b, int &r) { vector<int> C; r = 0; for (int i = A.size() - 1; i >= 0; i -- ) { r = r * 10 + A[i]; C.push_back(r / b); r %= b; } reverse(C.begin(), C.end()); while (C.size() > 1 && C.back() == 0) C.pop_back(); return C; }