02 2021 档案
摘要:1、<Inductive Guided Filter: Real-time Deep Image Matting with Weakly Annotated Masks on Mobile Devices> CVPR2019 下载地址:https://arxiv.org/pdf/1905.06747
阅读全文
摘要:def mutil_max_loss_two(self,R_loss,O_loss): if R_loss>O_loss: O_loss=R_loss return O_loss def mutil_max_loss_three(self,M_loss,glass_loss,O_loss): if
阅读全文
摘要:new_mask_image = torch.zeros([inst_map.shape[0],inst_map.shape[1],inst_map.shape[2],inst_map.shape[3]], dtype=torch.float32,device=inst_map.device) fo
阅读全文
摘要:def tensor2im(image_tensor, imtype=np.uint8, normalize=True): image_numpy = image_tensor.cpu().float().detach().numpy() if normalize: image_numpy = (i
阅读全文
摘要:def tensor2im(image_tensor, imtype=np.uint8, normalize=True): image_numpy = image_tensor.cpu().float().detach().numpy() if normalize: image_numpy = (i
阅读全文
摘要:采用GAN结构: 1、<A Surface Defect Detection Method Based on Positive Samples> 思路: 训练目的:abnormal输入经过GAN结构恢复得到normal输出。 测试阶段:abnormal输入和normal输出计算LBP值,比较得到瑕疵
阅读全文
摘要:采用Auto-encoder结构: 仅仅基于normal图像做训练。 思路重述: 训练目的:normal图像和abnormal经过Auto-encoder结构后均可以得到normal图像。 测试阶段:normal输入和normal输出的相似性较大,abnormal输入和normal输出的相似性较小。
阅读全文