GAN网络中采用导向滤波的论文
1、<Inductive Guided Filter: Real-time Deep Image Matting with Weakly Annotated Masks on Mobile Devices>
CVPR2019
下载地址:https://arxiv.org/pdf/1905.06747.pdf
2、<Fast End-to-End Trainable Guided Filter>
CVPR2018
下载地址:https://arxiv.org/pdf/1803.05619.pdf
代码路径:https://github.com/farmingyard/DeepGuidedFilter
3、<Learning to Cartoonize Using White-box Cartoon Representations>
CVPR2020
导向滤波用于调整图像的细节锐度,基于tensorflow实现,代码如下:
''' CVPR 2020 submission, Paper ID 6791 Source code for 'Learning to Cartoonize Using White-Box Cartoon Representations' ''' import tensorflow as tf import numpy as np def tf_box_filter(x, r): ch = x.get_shape().as_list()[-1] weight = 1/((2*r+1)**2) box_kernel = weight*np.ones((2*r+1, 2*r+1, ch, 1)) box_kernel = np.array(box_kernel).astype(np.float32) output = tf.nn.depthwise_conv2d(x, box_kernel, [1, 1, 1, 1], 'SAME') return output def guided_filter(x, y, r, eps=1e-2): x_shape = tf.shape(x) #y_shape = tf.shape(y) N = tf_box_filter(tf.ones((1, x_shape[1], x_shape[2], 1), dtype=x.dtype), r) mean_x = tf_box_filter(x, r) / N mean_y = tf_box_filter(y, r) / N cov_xy = tf_box_filter(x * y, r) / N - mean_x * mean_y var_x = tf_box_filter(x * x, r) / N - mean_x * mean_x A = cov_xy / (var_x + eps) b = mean_y - A * mean_x mean_A = tf_box_filter(A, r) / N mean_b = tf_box_filter(b, r) / N output = mean_A * x + mean_b return output if __name__ == '__main__': pass
paper:https://link.zhihu.com/?target=https%3A//systemerrorwang.github.io/White-box-Cartoonization/paper/06791.pdf
code:https://github.com/SystemErrorWang/White-box-Cartoonization