缺陷检测~Auto-encoder结构

采用Auto-encoder结构:

仅仅基于normal图像做训练。

 思路重述:

 训练目的:normal图像和abnormal经过Auto-encoder结构后均可以得到normal图像。

 测试阶段:normal输入和normal输出的相似性较大,abnormal输入和normal输出的相似性较小。得以分类abnormal图像和normal图像。

 问题:

1、 模型仅仅基于normal图像进行训练,容易逼近恒等变换,即输出和输出比较接近(abnormal输入获得abnormal输出)。

2、 输出图像比较模糊。

针对问题1提出解决方案的论文:

<Memorizing normality to detect anomaly: Memory-augmented deep autoencoder for unsupervised anomaly detection>,2019

<Learning Memory-guided Normality for Anomaly Detection>,2020

针对问题2提出解决方案的论文:

等看到了收集。

posted @ 2021-02-19 13:59  皮卡皮卡妞  阅读(179)  评论(0编辑  收藏  举报