目标检测+准确率、召回率、PR曲线、AP、mAp、mmAp

查准率、查全率、APmap,参考知乎地址:https://zhuanlan.zhihu.com/p/94597205

TP (True Positive):一个正确的检测,检测的IOU ≥ threshold。即预测的边界框(bounding box)中分类正确且边界框坐标正确的数量。在实际预测中,经常会出现多个预测框与同一个gt的IOU都大于阈值,这时通常只将这些预测框中score最大的算作TP,其它算作FP。

FP (False Positive):一个错误的检测,检测的IOU < threshold。即预测的边界框中分类错误或者边界框坐标不达标的数量,即预测出的所有边界框中除去预测正确的边界框,剩下的边界框的数量。

FN (False Negative):一个没有被检测出来的ground truth。所有没有预测到的边界框的数量,即正确的边界框(ground truth)中除去被预测正确的边界框,剩下的边界框的数量。

Precision (准确率 / 精确率):「Precision is the ability of a model to identify only the relevant objects」,准确率是模型只找到相关目标的能力,等于TP/(TP+FP)。即模型给出的所有预测结果中命中真实目标的比例。对于某个类别A,我们先计算每张图片中A类别TP和FP的数量并进行累加,即可得到类别A在整个数据集中TP和FP的数量,计算TP/(TP+FP)即可得到类别A的Precision (计算Precision的时候只需要用到TP和FP),但是会发现Precision的数值是受模型预测出的边界框的数量(上述计算式的分母部分)影响的,如果我们控制模型输出预测框的数量,就可以得到不同的Precision,所以我们可以设置不同的score阈值,最终得到不同数量的TP和FP。

Recall (召回率):「Recall is the ability of a model to find all the relevant cases (all ground truth bounding boxes)」,召回率是模型找到所有相关目标的能力,等于TP/(TP+FN)。即模型给出的预测结果最多能覆盖多少真实目标。对于某个类别A,按上述方法进行累加TP的数量,计算TP/(n_gt)即可得到Recall,其中n_gt表示类别A在所有图片中gt的数量之和。同理,如果控制模型输出的预测框的数量,就会改变TP的数量,也就会改变Recall的值。

scoreconfidence:每个预测边界框的分数/置信度,不同论文中的表达方式不同。即你的模型除了需要给出每个预测边界框的分类结果和边界坐标,还要给出这个边界框包含目标的可能性,score/confidence高代表模型认为其包含目标的可能性大,或者说模型优先选择score/confidence高的边界框。

Precision x Recall curve (PR曲线):所有precision-recall点相连形成的曲线(一般会为每个类别的预测框建立各自的PR曲线)。至于为什么同一个recall值下会有多个precision值,可以看之后部分的解释。想要得到PR曲线,可以通过改变score的阈值来控制模型输出的预测框数量,从而得到不同的TP、FP、FN。不过在实际操作中,并不需要手动来设置score的阈值,因为每个预测框都有一个score,我们只需要将其按从小到大进行排序,然后每次选择最后一个score作为阈值即可,这样如果类别A在所有图片中的预测框数量之和有100个,就可以计算100组类别A的Precision-Recall值。

AP (average Precision):平均精度,在不同recall下的最高precision的均值(一般会对各类别分别计算各自的AP)

mAP (mean AP):平均精度的均值,各类别的AP的均值。

mmAp:https://zhuanlan.zhihu.com/p/55575423

posted @ 2020-10-29 09:35  皮卡皮卡妞  阅读(2025)  评论(0编辑  收藏  举报