监督学习之模型评估与选择

一、定义:

监督学习主要包括分类回归

当输出被限制为有限的一组值(离散数值)时使用分类算法

当输出可以具有范围内的任何树值(连续数值)时使用回归算法

相似度学习是和回归和分类都密切相关的一类监督学习,它的目的是使用相似函数从样本中学习,这个函数可以度量两个对象之间的相似度或关联度

二、监督学习三要素

模型:总结数据的内在规律,用数据函数描述的系统 

策略:选取最优模型的评价准则

算法:选取最优模型的具体方法

三、模型评估:

1、训练集和测试集

  • 训练集(training set):训练模型的数据
  • 测试集(test set):测试模型的好坏

2、损失函数和经验风险

    a、损失函数(loss function):用来度量偏差的程度,记作:L(Y,f(X)). Y为真实结果,f(X)为预测结果,

  • 损失函数是模型里面系数的函数
  • 损失函数值越小,模型就越好
  • 常见的损失函数:

     

    b、经验风险(Empirical risk):模型f(X)关于训练数据集的平均损失

     

        经验风险最小化(Empirical risk Minimization ERM):经验风险最小的模型就是最优模型。【样本足够大时,ERM的学习有很好的效果】

3、训练误差和测试误差

训练误差:关于训练集的平均损失

测试误差:关于测试集的平均损失,反映了模型对未知数据的预测能力,这种能力称为泛化能力

四、模型选择:

1、过拟合和欠拟合

  • 过拟合:特征集过大,把噪声数据的特征也学习到了,不能很好地识别数据,不能正确的分类
  • 欠拟合:特征集过小,导致模型不能很好地拟合数据【对数据的特征学习得不够】

2、正则化和交叉验证

    a、正则化(防止过拟合):将结构风险最小化(Structural rick Minimization SRM )的过程。

     在经验风险上加上表示模型复杂度的正则化项(regularizer),或者叫惩罚项。

     正则化项:一般是模型复杂度的单调递增函数,即模型越复杂,正则化值越大

 

   b、交叉验证:数据集不足时,可以重复地利用数据。

  • 简单交叉验证
  • S折交叉验证
  • 留一交叉验证
posted @ 2019-09-03 07:28  与君共舞  阅读(701)  评论(0编辑  收藏  举报