Fork me on GitHub

OpenCV实战(4)——文档扫描OCR识别&答题卡识别判卷(文档扫描,图像矫正,透视变换,OCR识别)

如果需要处理的原图及代码,请移步小编的GitHub地址

  传送门:请点击我

  如果点击有误:https://github.com/LeBron-Jian/ComputerVisionPractice

  下面准备学习如何对文档扫描摆正及其OCR识别的案例,主要想法是对一张不规则的文档进行矫正,然后通过tesseract进行OCR文字识别,最后返回结果。下面进入正文:

  现代生活中,手机像素比较高,所以大家拍这些照片都很随意,随便拍,比如下面的照片,如发票,文本等等:

   对于这些图像矫正的问题,在图像处理领域还真的很多,比如文本的矫正,车牌的矫正,身份证的矫正等等。这些都是因为拍摄者拍照随意,这就要求我们通过后期的图像处理技术将图片还原好,才能进行下一步处理,比如数字分割,数字识别,字母识别,文字识别等等。

  上面的问题,我们在日常生活中遇到的可不少,因为拍摄时拍的不好,导致拍出来的图片歪歪扭扭的,很不自然,那么我们如何将图片矫正过来呢?

  总的来说,要进行图像矫正,至少需要以下几步:

  • 1,文档的轮廓提取技术
  • 2,原始与变换坐标的计算
  • 3,通过透视变换获取目标区域

  本文通过两个案例,一个是菜单矫正及OCR识别;另一个是答题卡矫正及OCR识别。

项目实战1——文档扫描OCR识别

  下面以菜单为例,慢慢剖析如何实现图像矫正,并获取菜单内容。

   上面的斜着的菜单,如何扫描到如右图所示的照片呢?其实步骤有以下几步:

  • 1,探测边缘
  • 2,提取菜单矩阵轮廓四点进行透视变换
  • 3,应用一个透视的转换去获取一个文档的自顶向下的正图

  知道步骤后,我们开始做吧!

1.1,文档轮廓提取

  我们拿到图像之后,首先进行边缘检测,其中预处理包括对噪音进行高斯模糊,然后进行边缘检测(这里采用了Canny算子提取特征),下面我们可以看一下边缘检测的代码与结果:

  代码:

def edge_detection(img_path):
    # 读取输入
    img = cv2.imread(img_path)
    # 坐标也会相同变换
    ratio = img.shape[0] / 500.0
    orig = img.copy()

    image = resize(orig, height=500)
    # 预处理
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    blur = cv2.GaussianBlur(gray, (5, 5), 0)
    edged = cv2.Canny(blur, 75, 200)
    show(edged)

   效果如下:

  我们从上图可以看到,已经将菜单的所有轮廓都检测出来了,而我们其实只需要最外面的轮廓,下面我们通过过滤得到最边缘的轮廓即可。

  代码如下:

def edge_detection(img_path):
    # *********  预处理 ****************
    # 读取输入
    img = cv2.imread(img_path)
    # 坐标也会相同变换
    ratio = img.shape[0] / 500.0
    orig = img.copy()

    image = resize(orig, height=500)
    # 预处理
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    blur = cv2.GaussianBlur(gray, (5, 5), 0)
    edged = cv2.Canny(blur, 75, 200)

    # *************  轮廓检测 ****************
    # 轮廓检测
    contours, hierarchy = cv2.findContours(edged.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
    cnts = sorted(contours, key=cv2.contourArea, reverse=True)[:5]

    # 遍历轮廓
    for c in cnts:
        # 计算轮廓近似
        peri = cv2.arcLength(c, True)
        # c表示输入的点集,epsilon表示从原始轮廓到近似轮廓的最大距离,它是一个准确度参数
        approx = cv2.approxPolyDP(c, 0.02*peri, True)

        # 4个点的时候就拿出来
        if len(approx) == 4:
            screenCnt = approx
            break

    res = cv2.drawContours(image, [screenCnt], -1, (0, 255, 0), 2)
    show(res)

   效果如下:

   如果说对轮廓排序后,不进行近似的话,我们直接取最大的轮廓,效果图如下:

1.2,透视变换(摆正图像)

  当获取到图片的最外轮廓后,接下来,我们需要摆正图像,在摆正图形之前,我们需要先学习透视变换。

1.2.1,cv2.getPerspectiveTransform()

  透视变换(Perspective Transformation)是将成像投影到一个新的视平面(Viewing Plane),也称作投影映射(Projective mapping),如下图所示,通过透视变换ABC变换到A'B'C'。

  cv2.getPerspectiveTransform() 获取投射变换后的H矩阵。

  cv2.getPerspectiveTransform() 函数的opencv 源码如下:

def getPerspectiveTransform(src, dst, solveMethod=None): # real signature unknown; restored from __doc__
    """
    getPerspectiveTransform(src, dst[, solveMethod]) -> retval
    .   @brief Calculates a perspective transform from four pairs of the corresponding points.
    .   
    .   The function calculates the \f$3 \times 3\f$ matrix of a perspective transform so that:
    .   
    .   \f[\begin{bmatrix} t_i x'_i \\ t_i y'_i \\ t_i \end{bmatrix} = \texttt{map_matrix} \cdot \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}\f]
    .   
    .   where
    .   
    .   \f[dst(i)=(x'_i,y'_i), src(i)=(x_i, y_i), i=0,1,2,3\f]
    .   
    .   @param src Coordinates of quadrangle vertices in the source image.
    .   @param dst Coordinates of the corresponding quadrangle vertices in the destination image.
    .   @param solveMethod method passed to cv::solve (#DecompTypes)
    .   
    .   @sa  findHomography, warpPerspective, perspectiveTransform
    """
    pass

   参数说明:

  • rect(即函数中src)表示待测矩阵的左上,右上,右下,左下四点坐标
  • transform_axes(即函数中dst)表示变换后四个角的坐标,即目标图像中矩阵的坐标

  返回值由原图像中矩阵到目标图像矩阵变换的矩阵,得到矩阵接下来则通过矩阵来获得变换后的图像,下面我们学习第二个函数。

1.2.2,cv2.warpPerspective()

  cv2.warpPerspective()  根据H获得变换后的图像。

  opencv源码如下:

def warpPerspective(src, M, dsize, dst=None, flags=None, borderMode=None, borderValue=None): # real signature unknown; restored from __doc__
    """
    warpPerspective(src, M, dsize[, dst[, flags[, borderMode[, borderValue]]]]) -> dst
    .   @brief Applies a perspective transformation to an image.
    .   
    .   The function warpPerspective transforms the source image using the specified matrix:
    .   
    .   \f[\texttt{dst} (x,y) =  \texttt{src} \left ( \frac{M_{11} x + M_{12} y + M_{13}}{M_{31} x + M_{32} y + M_{33}} ,
    .        \frac{M_{21} x + M_{22} y + M_{23}}{M_{31} x + M_{32} y + M_{33}} \right )\f]
    .   
    .   when the flag #WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted with invert
    .   and then put in the formula above instead of M. The function cannot operate in-place.
    .   
    .   @param src input image.
    .   @param dst output image that has the size dsize and the same type as src .
    .   @param M \f$3\times 3\f$ transformation matrix.
    .   @param dsize size of the output image.
    .   @param flags combination of interpolation methods (#INTER_LINEAR or #INTER_NEAREST) and the
    .   optional flag #WARP_INVERSE_MAP, that sets M as the inverse transformation (
    .   \f$\texttt{dst}\rightarrow\texttt{src}\f$ ).
    .   @param borderMode pixel extrapolation method (#BORDER_CONSTANT or #BORDER_REPLICATE).
    .   @param borderValue value used in case of a constant border; by default, it equals 0.
    .   
    .   @sa  warpAffine, resize, remap, getRectSubPix, perspectiveTransform
    """
    pass

   参数说明:

  • src 表示输入的灰度图像
  • M 表示变换矩阵
  • dsize 表示目标图像的shape,(width, height)表示变换后的图像大小
  • flags:插值方式,interpolation方法INTER_LINEAR或者INTER_NEAREST
  • borderMode:边界补偿方式,BORDER_CONSTANT or BORDER_REPLCATE
  • borderValue:边界补偿大小,常值,默认为0

1.2.3 cv2.perspectiveTransform()

  cv2.perspectiveTransform() 和 cv2.warpPerspective()大致作用相同,但是区别在于 cv2.warpPerspective()适用于图像,而cv2.perspectiveTransform() 适用于一组点。

  cv2.perspectiveTransform() 的opencv源码如下:

def perspectiveTransform(src, m, dst=None): # real signature unknown; restored from __doc__
    """
    perspectiveTransform(src, m[, dst]) -> dst
    .   @brief Performs the perspective matrix transformation of vectors.
    .   
    .   The function cv::perspectiveTransform transforms every element of src by
    .   treating it as a 2D or 3D vector, in the following way:
    .   \f[(x, y, z)  \rightarrow (x'/w, y'/w, z'/w)\f]
    .   where
    .   \f[(x', y', z', w') =  \texttt{mat} \cdot \begin{bmatrix} x & y & z & 1  \end{bmatrix}\f]
    .   and
    .   \f[w =  \fork{w'}{if \(w' \ne 0\)}{\infty}{otherwise}\f]
    .   
    .   Here a 3D vector transformation is shown. In case of a 2D vector
    .   transformation, the z component is omitted.
    .   
    .   @note The function transforms a sparse set of 2D or 3D vectors. If you
    .   want to transform an image using perspective transformation, use
    .   warpPerspective . If you have an inverse problem, that is, you want to
    .   compute the most probable perspective transformation out of several
    .   pairs of corresponding points, you can use getPerspectiveTransform or
    .   findHomography .
    .   @param src input two-channel or three-channel floating-point array; each
    .   element is a 2D/3D vector to be transformed.
    .   @param dst output array of the same size and type as src.
    .   @param m 3x3 or 4x4 floating-point transformation matrix.
    .   @sa  transform, warpPerspective, getPerspectiveTransform, findHomography
    """
    pass

   参数含义:

  • src:输入的二通道或三通道的图像
  • m:变换矩阵
  • 返回结果为相同size的图像

1.2.4  摆正图像

  将图像框出来后,我们计算出变换前后的四个点的坐标,然后得到最终的变换结果。

  代码如下:

def order_points(pts):
    # 一共四个坐标点
    rect = np.zeros((4, 2), dtype='float32')
    
    # 按顺序找到对应的坐标0123 分别是左上,右上,右下,左下
    # 计算左上,由下
    # numpy.argmax(array, axis) 用于返回一个numpy数组中最大值的索引值
    s = pts.sum(axis=1)  # [2815.2   1224.    2555.712 3902.112]
    print(s)
    rect[0] = pts[np.argmin(s)]
    rect[2] = pts[np.argmax(s)]

    # 计算右上和左
    # np.diff()  沿着指定轴计算第N维的离散差值  后者-前者
    diff = np.diff(pts, axis=1)
    rect[1] = pts[np.argmin(diff)]
    rect[3] = pts[np.argmax(diff)]
    return rect


# 透视变换
def four_point_transform(image, pts):
    # 获取输入坐标点
    rect = order_points(pts)
    (tl, tr, br, bl) = rect

    # 计算输入的w和h的值
    widthA = np.sqrt(((br[0] - bl[0])**2) + ((br[1] - bl[1])**2))
    widthB = np.sqrt(((tr[0] - tl[0])**2) + ((tr[1] - tl[1])**2))
    maxWidth = max(int(widthA), int(widthB))

    heightA = np.sqrt(((tr[0] - br[0])**2) + ((tr[1] - br[1])**2))
    heightB = np.sqrt(((tl[0] - bl[0])**2) + ((tl[1] - bl[1])**2))
    maxHeight = max(int(heightA), int(heightB))

    # 变化后对应坐标位置
    dst = np.array([
        [0, 0],
        [maxWidth - 1, 0],
        [maxWidth - 1, maxHeight - 1],
        [0, maxHeight - 1]],
        dtype='float32')    

    # 计算变换矩阵
    M = cv2.getPerspectiveTransform(rect, dst)
    warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))

    # 返回变换后的结果
    return warped


# 对透视变换结果进行处理
def get_image_processingResult():
    img_path = 'images/receipt.jpg'
    orig, ratio, screenCnt = edge_detection(img_path)
    # screenCnt 为四个顶点的坐标值,但是我们这里需要将图像还原,即乘以以前的比率
    # 透视变换  这里我们需要将变换后的点还原到原始坐标里面
    warped = four_point_transform(orig, screenCnt.reshape(4, 2)*ratio)
    # 二值处理
    gray = cv2.cvtColor(warped, cv2.COLOR_BGR2GRAY)
    thresh = cv2.threshold(gray, 100, 255, cv2.THRESH_BINARY)[1]

    thresh_resize = resize(thresh, height = 400)
    show(thresh_resize)

  效果如下:

1.2.5  其他图片矫正实践

  这里图片原图都可以去我的GitHub里面去拿(地址:https://github.com/LeBron-Jian/ComputerVisionPractice)。

  对于下面这张图:

   我们使用透视变换抠出来效果如下:

   这个图使用和之前的代码就可以,不用修改任何东西就可以拿到其目标区域。

  下面看这张图:

   其实和上面图类似,不过这里我们依次看一下其图像处理过程,毕竟和上面两张图完全不是一个类型了。

  首先是 Canny算子得到的结果:

   其实拿到全轮廓后,我们就直接获取最外面的轮廓即可。

   我自己更改了一下,效果一样,但是还是贴上代码:

def edge_detection(img_path):
    # *********  预处理 ****************
    # 读取输入
    img = cv2.imread(img_path)
    # 坐标也会相同变换
    ratio = img.shape[0] / 500.0
    orig = img.copy()

    image = resize(orig, height=500)
    # 预处理
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    blur = cv2.GaussianBlur(gray, (5, 5), 0)
    edged = cv2.Canny(blur, 75, 200)
    # show(edged)
    # *************  轮廓检测 ****************
    # 轮廓检测
    contours, hierarchy = cv2.findContours(edged.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
    #cnts = sorted(contours, key=cv2.contourArea, reverse=True)[:5]

    max_area = 0
    myscreenCnt = []
    for i in contours:
        temp = cv2.contourArea(i)
        if max_area < temp:
            myscreenCnt = i

    # res = cv2.drawContours(image, myscreenCnt, -1, (0, 255, 0), 2)
    # show(res)
    return orig, ratio, screenCnt

   最后我们不对发票做任何处理,看原图效果:

   部分代码如下:

# 对透视变换结果进行处理
def get_image_processingResult():
    img_path = 'images/fapiao.jpg'
    orig, ratio, screenCnt = edge_detection(img_path)
    # screenCnt 为四个顶点的坐标值,但是我们这里需要将图像还原,即乘以以前的比率
    # 透视变换  这里我们需要将变换后的点还原到原始坐标里面
    warped = four_point_transform(orig, screenCnt.reshape(4, 2)*ratio)

    thresh_resize = resize(warped, height = 400)
    show(thresh_resize)
    return thresh

   下面再看一个例子:

  首先,它得到的Canny结果如下:

   我们需要对它进行一些小小的处理。

  我做了一些尝试,如果直接对膨胀后的图像,进行外接矩形,那么效果如下:

   代码如下:

    x, y, w, h = cv2.boundingRect(myscreenCnt)
    res = cv2.rectangle(image, (x,y), (x+w,y+h), (0, 255, 0), 2)
    show(res)

   所以对轮廓取近似,效果稍微好点:

    # 计算轮廓近似
    peri = cv2.arcLength(myscreenCnt, True)
    # c表示输入的点集,epsilon表示从原始轮廓到近似轮廓的最大距离,它是一个准确度参数
    approx = cv2.approxPolyDP(myscreenCnt, 0.015*peri, True)
    res = cv2.drawContours(image, [approx], -1, (0, 255, 0), 2)
    show(res)

   效果如下:

   因为这个是不规整图形,所以无法进行四个角的转换,需要更多角,这里不再继续尝试。

1.3,OCR识别

  这里回到我们的菜单来,我们已经得到了扫描后的结果,下面我们进行OCR文字识别。

  这里使用tesseract进行识别,不懂的可以参考我之前的博客(包括安装tesseract,和通过tesseract训练自己的字库):

深入学习使用ocr算法识别图片中文字的方法

深入学习Tesseract-ocr识别中文并训练字库的方法

  配置好tesseract之后(这里不再show过程,因为我已经有了),我们通过其进行文字识别。

1.3.1  通过Python使用tesseract的坑

  如果直接使用Python进行OCR识别的话,会出现下面问题:

   这里因为anaconda下载的 pytesseract 默认运行的tesseract.exe 是默认文件夹,所以有问题,我们改一下。

  注意,找到安装地址,我们会发现有两个文件夹,我们进入上面文件夹即可

   进入之后如下,我们打开 pytesseract.py。

   注意这里的地址:

   我们需要修改为我们安装的地址,即使我们之前设置了全局变量,但是Python还是不care的。

   这里注意地址的话,我们通过 / 即可,不要 \,避免windows出现问题。

1.3.2  OCR识别

  安装好一切之后,就可以识别了,我们这里有两种方法,一种是直接在人家的环境下运行,一种是在Python中通过安装pytesseract 库运行,效果都一样。

  代码如下:

from PIL import Image
import pytesseract
import cv2
import os

preprocess = 'blur' #thresh

image = cv2.imread('scan.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

if preprocess == "thresh":
    gray = cv2.threshold(gray, 0, 255,cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]

if preprocess == "blur":
    gray = cv2.medianBlur(gray, 3)
    
filename = "{}.png".format(os.getpid())
cv2.imwrite(filename, gray)
    
text = pytesseract.image_to_string(Image.open(filename))
print(text)
os.remove(filename)

cv2.imshow("Image", image)
cv2.imshow("Output", gray)
cv2.waitKey(0)                                   

  使用Python运行,效果如下:

  直接在tesseract.exe运行:

  效果如下:

   可能识别效果不是很好。不过不重要,因为图片也比较模糊,不是那么工整的。

1.4,完整代码

  当然也可以去我的GitHub直接去下载。

  代码如下:

import cv2
import numpy as np
from PIL import Image
import pytesseract


def show(image):
    cv2.imshow('image', image)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

def resize(image, width=None, height=None, inter=cv2.INTER_AREA):
    dim = None
    (h, w) = image.shape[:2]
    if width is None and height is None:
        return image
    if width is None:
        r = height / float(h)
        dim = (int(w*r), height)
    else:
        r = width / float(w)
        dim = (width, int(h*r))
    resized = cv2.resize(image, dim, interpolation=inter)
    return resized


def edge_detection(img_path):
    # *********  预处理 ****************
    # 读取输入
    img = cv2.imread(img_path)
    # 坐标也会相同变换
    ratio = img.shape[0] / 500.0
    orig = img.copy()

    image = resize(orig, height=500)
    # 预处理
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    blur = cv2.GaussianBlur(gray, (5, 5), 0)
    edged = cv2.Canny(blur, 75, 200)

    # *************  轮廓检测 ****************
    # 轮廓检测
    contours, hierarchy = cv2.findContours(edged.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
    cnts = sorted(contours, key=cv2.contourArea, reverse=True)[:5]

    # 遍历轮廓
    for c in cnts:
        # 计算轮廓近似
        peri = cv2.arcLength(c, True)
        # c表示输入的点集,epsilon表示从原始轮廓到近似轮廓的最大距离,它是一个准确度参数
        approx = cv2.approxPolyDP(c, 0.02*peri, True)

        # 4个点的时候就拿出来
        if len(approx) == 4:
            screenCnt = approx
            break

    # res = cv2.drawContours(image, [screenCnt], -1, (0, 255, 0), 2)
    # res = cv2.drawContours(image, cnts[0], -1, (0, 255, 0), 2)
    # show(orig)
    return orig, ratio, screenCnt


def order_points(pts):
    # 一共四个坐标点
    rect = np.zeros((4, 2), dtype='float32')
    
    # 按顺序找到对应的坐标0123 分别是左上,右上,右下,左下
    # 计算左上,由下
    # numpy.argmax(array, axis) 用于返回一个numpy数组中最大值的索引值
    s = pts.sum(axis=1)  # [2815.2   1224.    2555.712 3902.112]
    print(s)
    rect[0] = pts[np.argmin(s)]
    rect[2] = pts[np.argmax(s)]

    # 计算右上和左
    # np.diff()  沿着指定轴计算第N维的离散差值  后者-前者
    diff = np.diff(pts, axis=1)
    rect[1] = pts[np.argmin(diff)]
    rect[3] = pts[np.argmax(diff)]
    return rect


# 透视变换
def four_point_transform(image, pts):
    # 获取输入坐标点
    rect = order_points(pts)
    (tl, tr, br, bl) = rect

    # 计算输入的w和h的值
    widthA = np.sqrt(((br[0] - bl[0])**2) + ((br[1] - bl[1])**2))
    widthB = np.sqrt(((tr[0] - tl[0])**2) + ((tr[1] - tl[1])**2))
    maxWidth = max(int(widthA), int(widthB))

    heightA = np.sqrt(((tr[0] - br[0])**2) + ((tr[1] - br[1])**2))
    heightB = np.sqrt(((tl[0] - bl[0])**2) + ((tl[1] - bl[1])**2))
    maxHeight = max(int(heightA), int(heightB))

    # 变化后对应坐标位置
    dst = np.array([
        [0, 0],
        [maxWidth - 1, 0],
        [maxWidth - 1, maxHeight - 1],
        [0, maxHeight - 1]],
        dtype='float32')    

    # 计算变换矩阵
    M = cv2.getPerspectiveTransform(rect, dst)
    warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))

    # 返回变换后的结果
    return warped


# 对透视变换结果进行处理
def get_image_processingResult():
    img_path = 'images/receipt.jpg'
    orig, ratio, screenCnt = edge_detection(img_path)
    # screenCnt 为四个顶点的坐标值,但是我们这里需要将图像还原,即乘以以前的比率
    # 透视变换  这里我们需要将变换后的点还原到原始坐标里面
    warped = four_point_transform(orig, screenCnt.reshape(4, 2)*ratio)
    # 二值处理
    gray = cv2.cvtColor(warped, cv2.COLOR_BGR2GRAY)
    thresh = cv2.threshold(gray, 100, 255, cv2.THRESH_BINARY)[1]

    cv2.imwrite('scan.jpg', thresh)

    thresh_resize = resize(thresh, height = 400)
    # show(thresh_resize)
    return thresh



def ocr_recognition(filename='tes.jpg'):
    img = Image.open(filename)
    text = pytesseract.image_to_string(img)
    print(text)


if __name__ == '__main__':
    # 获取矫正之后的图片
    # get_image_processingResult()
    # 进行OCR文字识别
    ocr_recognition()

 

项目实战2——答题卡识别判卷

  答题卡识别判卷,大家应该都不陌生。那么它需要做什么呢?肯定是将我们在答题卡上画圈圈的地方识别出来。

  这是答题卡样子(原图请去我GitHub上拿:https://github.com/LeBron-Jian/ComputerVisionPractice):

  我们肯定是需要分为两步走,第一步就是和上面处理类似,拿到答题卡的最终透视变换结果,使得图片中的答题卡可以凸显出来。第二步就是根据正确答案和答题卡的答案来判断正确率。

2.1 扫描答题卡及透视变换

  这里我们对答题卡进行透视变换,因为之前已经详细的学习了这一部分,这里不再赘述,只是简单记录一下流程和图像处理效果,并展示代码。

  下面详细的总结处理步骤:

  • 1,图像灰度化
  • 2,高斯滤波处理
  • 3,使用Canny算子找到图片边缘信息
  • 4,寻找轮廓
  • 5,找到最外层轮廓,并确定四个坐标点
  • 6,根据四个坐标位置计算出变换后的四个角位置
  • 7,获取变换矩阵H,得到最终变换结果

  下面直接使用上面代码进行跑,首先展示Canny效果:

   当Canny效果不错的时候,我们拿到图像的轮廓进行筛选,找到最外面的轮廓,如下图所示:

   最后通过透视变换,获得答题卡的区域,如下图所示:

2.2  根据正确答案和图卡判断正确率

  这里我们拿到上面得到的答题卡图像,然后进行操作,获取到涂的位置,然后和正确答案比较,最后获得正确率。

  这里分为以下几个步骤:

  • 1,对图像进行二值化,将涂了颜色的地方变为白色
  • 2,对轮廓进行筛选,找到正确答案的轮廓
  • 3,对轮廓从上到下进行排序
  • 4,计算颜色最大值的位置和Nonezeros的值
  • 5,结合正确答案计算正确率
  • 6,将正确答案打印在图像上

  下面开始实践:

  首先对图像进行二值化,如下图所示:

   如果对二值化后的图直接进行画轮廓,如下:

   所以不能直接处理,这里我们需要做细微处理,然后拿到图像如下:

   这样就可以获得其涂的轮廓,如下所示:

   然后筛选出我们需要的涂了答题卡的位置,效果如下:

   然后通过这五个坐标点,确定答题卡的位置,如下图所示:

   然后根据真实答案和图中答案对比结果,我们将最终结果与圈出来答案展示在图上,如下:

   此项目到此结束。

 2.3 部分代码展示

  完整代码可以去我的GitHub上拿(地址:https://github.com/LeBron-Jian/ComputerVisionPractice)

   代码如下:

import cv2
import numpy as np
from PIL import Image
import pytesseract


def show(image):
    cv2.imshow('image', image)
    cv2.waitKey(0)
    cv2.destroyAllWindows()


def sorted_contours(cnt, model='left-to-right'):
    if model == 'top-to-bottom':
        cnt = sorted(cnt, key=lambda x:cv2.boundingRect(x)[1])

    elif model == 'left-to-right':
        cnt = sorted(cnt, key=lambda x:cv2.boundingRect(x)[0])

    return cnt

# 正确答案
ANSWER_KEY = {0:1, 1:4, 2:0, 3:3, 4:1}

def answersheet_comparison(filename='finalanswersheet.jpg'):
    '''
        对变换后的图像进行操作(wraped),构造mask
        根据有无填涂的特性,进行位置的计算
    '''
    img = cv2.imread(filename)
    # print(img.shape)   # 156*194
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # 对图像进行二值化操作
    thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
    # show(thresh)

    # 对图像进行细微处理
    kernele = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, ksize=(3, 3))
    erode = cv2.erode(thresh, kernele)
    kerneld = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, ksize=(3, 3))
    dilate = cv2.dilate(erode, kerneld)
    # show(dilate)

    # 对图像进行轮廓检测
    cnts = cv2.findContours(dilate, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[0]
    # res = cv2.drawContours(img.copy(), cnts, -1, (0, 255, 0), 2)
    # # show(res)


    questionCnts = []
    for c in cnts:
        (x, y, w, h) = cv2.boundingRect(c)
        arc = w/float(h)

        # 根据实际情况找出合适的轮廓
        if  w > 8 and h > 8 and arc >= 0.7 and arc <= 1.3:
            questionCnts.append(c)

    # print(len(questionCnts))  # 这里总共圈出五个轮廓 分别为五个位置的轮廓
    # 第四步,将轮廓进行从上到下的排序
    questionCnts = sorted_contours(questionCnts, model='top-to-bottom')


    correct = 0
    all_length = len(questionCnts)
    for i in range(len(questionCnts)):
        x, y, w, h = cv2.boundingRect(questionCnts[i])
        answer = round((x-32)/float(100)*5)
        print(ANSWER_KEY[i])
        if answer == ANSWER_KEY[i]:
            correct += 1
            img = cv2.drawContours(img, questionCnts[i], -1, 0, 2)
    
    score = float(correct)/float(all_length)
    print(correct, all_length, score)

    cv2.putText(img, 'correct_score:%s'%score, (10, 15), cv2.FONT_HERSHEY_SIMPLEX,
        0.4, 0.3)
    show(img)



if __name__ == '__main__':
    answersheet_comparison()

 

 2.4 高清答题卡识别

  我拿到了网上答题卡识别的原图,下面继续做一遍,按照网课的方法。

  需要答题卡原图的请去我的GitHub拿,地址在文章上面。下面继续学习。

  这里就省略了Canny检测边缘的步骤,也省略了获取交点的步骤,这些之前已经详细学习过了。我们这里不再赘述。

  当进行完透视变换,拿到的图像如下所示:

  虽然背景各不相同,但是比较明显,所以扣出答题卡这一步不难。我分别将其抠出来,图像在GitHub上,我就用上图所示的样子进行下面一系列操作。

   下面进行的步骤和之前答题卡识别的步骤完全不同。这里重新学习新的知识点。首先看一个函数:

2.4.1 cv2.countNonZero()函数

  cv2.countNonZero()函数:返回灰度值不为0的像素数,统计黑色像素点,可用来判断图像是否全黑。

  cv2.countNonZero()函数的opencv源码如下:

def countNonZero(src): # real signature unknown; restored from __doc__
    """
    countNonZero(src) -> retval
    .   @brief Counts non-zero array elements.
    .   
    .   The function returns the number of non-zero elements in src :
    .   \f[\sum _{I: \; \texttt{src} (I) \ne0 } 1\f]
    .   @param src single-channel array.
    .   @sa  mean, meanStdDev, norm, minMaxLoc, calcCovarMatrix
    """
    pass

 

 

2.4.2 根据正确答案和图卡判断正确率(图片清晰版)

  这里我们首先对答题卡图片进行二值化,可以看到效果如下:

  比起我们之前网上截取的图片简直是天差地别。我们再看一个涂了答题卡的图片:

  这效果是相当的好,我们不需要再对图像做其他任何处理,直接获取图像轮廓,如下:

   这清晰的,ABCDE都能看见。实在是夸张。。。。。

  后面我们就不展示第一个图了,直接展示涂答题卡的。拿到轮廓之后,我们需要筛选出涂了答题卡的,首先我们拿到每个轮廓,我们比对一下涂了和没涂的效果,如下图所示:

   最后我们对比正确答案,和上面一样,我们将正确答案标记出来,使用绿色,错误答案也标记出来,使用红色。然后展示一下。

   我们发现有四个绿的(正确的),一个红的(错误的),所以得到最终准确率为80%,我们展示在答题卡上如下:

   再看一个:

   OK,标准的答题卡项目也完成了。

2.4.3  部分代码展示

  需要全部代码,请去我的GitHub拿,这里展示一点重要的代码,如下:

#_*_coding:utf-8_*_
import numpy as np
import cv2


def sorted_contours(cnts, method='left-to-right'):
    if method == 'top-to-bottom':
        cnts = sorted(cnts, key=lambda x:cv2.boundingRect(x)[1])

    elif method == 'left-to-right':
        cnts = sorted(cnts, key=lambda x:cv2.boundingRect(x)[0])

    return cnts



# 正确答案
ANSWER_KEY = {0:1, 1:4, 2:0, 3:3, 4:1}

def answersheet_comparison(filename):
    '''
        对变换后的图像进行操作(wraped),构造mask
        根据有无填涂的特性,进行位置的计算
    '''
    img = cv2.imread(filename)
    # print(img.shape)   
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    thresh = cv2.threshold(gray, 0, 255,cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1] 
    # show(thresh)
    thresh_Contours = thresh.copy()
    # 找到每一个圆圈轮廓
    cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[0]
    # cv2.drawContours(thresh_Contours, cnts, -1, (0, 0, 255), 3)
    # show(thresh_Contours)
    questionCnts = []
    # 遍历
    for c in cnts:
        # 计算比例和大小
        (x, y, w, h) = cv2.boundingRect(c)
        ar = w / float(h)
        # 根据实际情况指定标准
        if w>=20 and h>=20 and ar>=0.9 and ar<=1.1:
            questionCnts.append(c)

    # cv2.drawContours(thresh_Contours, questionCnts, -1, (0, 0, 255), 3)[0]
    # show(thresh_Contours)

    print('筛选出来的轮廓有: ', len(questionCnts))
    # 按照从上到下进行排序
    questionCnts = sorted_contours(questionCnts, method='top-to-bottom')
    correct = 0
    # 每排有5个选项
    print('筛选出来的轮廓有: ', len(questionCnts))
    for (q, i) in enumerate(np.arange(0, len(questionCnts), 5)):
        # 排序
        cnts = sorted_contours(questionCnts[i:i+5])
        bubbled = None
        # 遍历每一个结果
        for (j, c) in enumerate(cnts):
            # 使用mask来判断结果
            mask = np.zeros(thresh.shape, dtype='uint8')
            cv2.drawContours(mask, [c], -1, 255, -1)  # -1 表示填充
            # 通过计算非零点数量来算是否选择这个答案
            mask = cv2.bitwise_and(thresh, thresh, mask=mask)
            # show(mask)
            total = cv2.countNonZero(mask)
            # print('total is   ',total)  # 涂了颜色的 黑色总值很大  大于600 而没有涂的小于300
            # total is    716   total is    299

            # 通过阈值判断
            if bubbled is None or total > bubbled[0]:
                bubbled = (total, j)

        # 对比正确答案
        color = (0, 0, 255)
        k = ANSWER_KEY[q]
        # 判断正确
        if k == bubbled[1]:
            color = (0, 255, 0)
            correct +=1

        # 绘图
        res = img.copy()
        cv2.drawContours(res, [cnts[k]], -1, color, 3)
        show(res)

    # score = (correct / 5.0)*100
    # print("[INFO] score: {:.2f}%".format(score))
    # cv2.putText(img, "[INFO] score:{:.2f}%".format(score), (10, 30),
    # cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 2)
    # show(img)

if __name__ == '__main__':
    filename = r'test_01.png'
    answersheet_comparison(filename)

 

 

 

参考文献:https://www.pyimagesearch.com/2014/09/01/build-kick-ass-mobile-document-scanner-just-5-minutes/

https://blog.csdn.net/weixin_30666753/article/details/99054383

https://www.cnblogs.com/my-love-is-python/archive/2004/01/13/10439224.html

posted @ 2020-11-11 09:07  战争热诚  阅读(15856)  评论(5编辑  收藏  举报