关于欧拉回路&&连通图
- 题目描述:
-
欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路。现给定一个图,问是否存在欧拉回路?
- 输入:
-
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是节点数N ( 1 < N < 1000 )和边数M;随后的M行对应M条边,每行给出一对正整数,分别是该条边直接连通的两个节点的编号(节点从1到N编号)。当N为0时输入结束。
- 输出:
-
每个测试用例的输出占一行,若欧拉回路存在则输出1,否则输出0。
- 样例输入:
-
3 3 1 2 1 3 2 3 3 2 1 2 2 3 0
- 样例输出:
-
1 0
http://ac.jobdu.com/problem.php?pid=1027
/*******************************************/View Code1 #include <iostream> 2 3 using namespace std; 4 5 int find(int map[],int x); 6 7 int main() 8 { 9 int map[1005],degree[1005],count1,count2; 10 int N, M,i,x,y; 11 while(cin>>N && N>0) { 12 cin>>M; 13 for(i=0;i<=N;i++) { 14 map[i]=i; 15 degree[i]=0; 16 } 17 for(i=0;i<M;i++) { 18 cin>>x>>y; 19 degree[x]++; 20 degree[y]++; 21 map[find(map,y)]=map[find(map,x)]; 22 } 23 count1=count2=0; 24 for(i=1;i<=N;i++) { 25 if(map[i]==i) count1++; 26 if(degree[i]==0 || degree[i]%2==1) count2++; 27 } 28 if(count1==1 && count2==0) cout<<1<<endl; 29 else cout<<0<<endl; 30 } 31 return 0; 32 } 33 34 int find(int map[], int x) { 35 return map[x]==x ? x : find(map,map[x]) ; 36 }
posted on 2013-02-15 22:17 Zachary_wiz 阅读(326) 评论(0) 编辑 收藏 举报