Leetcode 笔记 110 - Balanced Binary Tree
题目链接:Balanced Binary Tree | LeetCode OJ
Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
Tags: Depth-first Search
分析
同样是很基础的深度优先遍历题目,只要在遍历时取得左右子树的深度,对比是否相差超过1就可以得出结果,需要考虑的技巧是怎么在发现不平衡之后,最迅速的返回结果,不做多余的计算。
有可能出现的问题是先写一个Helper方法获得结点到最下层叶子结点的深度,然后在深度优先遍历中每次调用这个方法来对比深度。这是不必要的,获取深度本身就是用深度优先遍历实现的,一边遍历一边计算深度就OK。
示例
class Solution:
# @param root, a tree node
# @return a boolean
def isBalanced(self, root):
return self.getBalanceHeight(root) != -1
# @param root, a tree node
# @return a int, if the root is balanced return height, or return -1
def getBalanceHeight(self, root):
if root is None:
return 0;
leftHeight = self.getBalanceHeight(root.left)
# if left child tree is not balanced, return -1 directly to stop recursion
if leftHeight < 0:
return -1
rightHeight = self.getBalanceHeight(root.right)
# if right child tree is not balanced, return -1 directly to stop recursion
if rightHeight < 0:
return -1
if math.fabs(leftHeight - rightHeight) > 1:
return -1
return max(leftHeight, rightHeight) + 1
Leetcode 笔记系列的Python代码共享在https://github.com/wizcabbit/leetcode.solution
扩展
看到了有童鞋的解法类似与:
def getHeight(self, root):
if root == None:
return 0
left_height, right_height = self.getHeight(root.left), self.getHeight(root.right)
if left_height < 0 or right_height < 0 or math.fabs(left_height - right_height) > 1:
return -1
return max(left_height, right_height) + 1
这个解法是没问题可以Accpeted的,但是我在分别计算出leftHeight和rightHeight之后,立刻检测了一下其深度是否为-1,如果左或右子树的深度返回-1,证明子树不是Balanced的,可以不再计算其他子树的深度,当前结点也返回-1.这样可以在发现不平衡的子树后,立刻终止遍历,比上面的算法稍快一些。
另外,至少在Python中,使用和高度值同为int的-1表示子树不平衡,比使用None或者False来表示要节省时间,如果使用None而不是-1,跑完所有的Test Case大概会多用1/4的时间。
转载本博客站点(http://www.cnblogs.com/wizcabbit/)内的所有原创内容时,必须遵循此协议:
署名-非商业性使用-禁止演绎 4.0 国际 (CC BY-NC-ND 4.0)
禁止对文章内容做出更改,禁止的行为包括但不限于:修改内容、修改图片、去除链接、去除作者标识
必须在转载中标识本文的显式链接,且链接必须可以点击
遵守CC协议是为了更好地保持原创内容的质量,保留针对协议中的主张进行追诉的权利。