Caffe+UbuntuKylin14.04_X64+CUDA 6.5配置
在编译Caffe的漫长过程中,经过了一个又一个坑,掉进去再爬出来,挺有趣的。对比原文有修改!
LInux下配置安装:(本文档使用同一块NVIDIA显卡进行显示与计算, 如分别使用不同的显卡进行显示和计算,则可能不适用。)
原文链接:http://blog.sciencenet.cn/blog-1583812-841855.html
参考链接:http://www.cnblogs.com/platero/p/3993877.html
官方文档:http://caffe.berkeleyvision.org/installation.html
1. 安装build-essentials
安装开发所需要的一些基本包:
sudo apt-get install build-essential
2. 安装NVIDIA驱动 (3.4.0)
2.1 准备工作(2014-12-03更新)
在关闭桌面管理 lightdm 的情况下安装驱动似乎可以实现Intel 核芯显卡 来显示 + NVIDIA 显卡来计算。具体步骤如下:
1. 首先在BIOS设置里选择用Intel显卡来显示或作为主要显示设备
2. 进入Ubuntu, 按 ctrl+alt+F1 进入tty, 登录tty后输入如下命令
sudo service lightdm stop
该命令会关闭lightdm。如果你使用 gdm或者其他的desktop manager, 请在安装NVIDIA驱动前关闭他。
2.2 安装驱动
输入下列命令添加驱动源
sudo add-apt-repository ppa:xorg-edgers/ppa sudo apt-get update
安装340版驱动 (CUDA 6.5.14目前最高仅支持340版驱动, 343, 346版驱动暂不支持)
sudo apt-get install nvidia-340
安装完成后, 继续安装下列包 (否则在运行sample时会报错)
sudo apt-get install nvidia-340-uvm
安装完成后 reboot.
3. 安装CUDA 6.5
【点击此链接】 下载CUDA 6.5.
然后通过下列命令, 将下载得到的.run文件解压成三个文件, 分别为
- CUDA安装包: cuda-linux64-rel-6.5.14-18749181.run
- NVIDIA驱动: NVIDIA-Linux-x86_64-340.29.run
- SAMPLE包: cuda-samples-linux-6.5.14-18745345.run
这里不安装NVIDIA驱动
cuda6.5.run --extract=extract_path
注意, 需要通过下面命令给所有.run文件可执行权限
chmod +x *.run
3.1 安装CUDA
通过下列命令安装CUDA, 按照说明一步一步安装至完成.
sudo ./cuda-linux64-rel-6.5.14-18749181.run
3.1.1 添加环境变量
安装完成后需要在/etc/profile中添加环境变量, 在文件最后添加:
PATH=/usr/local/cuda-6.5/bin:$PATH export PATH
保存后, 执行下列命令, 使环境变量立即生效
source /etc/profile
3.1.2 添加lib库路径
在 /etc/ld.so.conf.d/加入文件 cuda.conf, 内容如下
/usr/local/cuda-6.5/lib64
执行下列命令使之立刻生效
sudo ldconfig
3.2 安装CUDA SAMPLE
首先安装下列依赖包
sudo apt-get install freeglut3-dev build-essential libx11-dev libxmu-dev libxi-dev libglu1-mesa-dev
然后用下述命令安装sample文件
sudo ./cuda-samples-linux-6.5.14-18745345.run
完成后编译Sample文件, 整个过程大概10分钟左右
cd /usr/local/cuda-6.5/samples sudo make
全部编译完成后, 进入 samples/bin/x86_64/linux/release, sudo下运行deviceQuery
sudo ./deviceQuery
如果出现下列显卡信息, 则驱动及显卡安装成功:
./deviceQuery Starting... CUDA Device Query (Runtime API) version (CUDART static linking) Detected 1 CUDA Capable device(s) Device 0: "GeForce GTX 670" CUDA Driver Version / Runtime Version 6.5 / 6.5 CUDA Capability Major/Minor version number: 3.0 Total amount of global memory: 4095 MBytes (4294246400 bytes) ( 7) Multiprocessors, (192) CUDA Cores/MP: 1344 CUDA Cores GPU Clock rate: 1098 MHz (1.10 GHz) Memory Clock rate: 3105 Mhz Memory Bus Width: 256-bit L2 Cache Size: 524288 bytes Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096) Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers Total amount of constant memory: 65536 bytes Total amount of shared memory per block: 49152 bytes Total number of registers available per block: 65536 Warp size: 32 Maximum number of threads per multiprocessor: 2048 Maximum number of threads per block: 1024 Max dimension size of a thread block (x,y,z): (1024, 1024, 64) Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535) Maximum memory pitch: 2147483647 bytes Texture alignment: 512 bytes Concurrent copy and kernel execution: Yes with 1 copy engine(s) Run time limit on kernels: Yes Integrated GPU sharing Host Memory: No Support host page-locked memory mapping: Yes Alignment requirement for Surfaces: Yes Device has ECC support: Disabled Device supports Unified Addressing (UVA): Yes Device PCI Bus ID / PCI location ID: 1 / 0 Compute Mode: < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) > deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 6.5, CUDA Runtime Version = 6.5, NumDevs = 1, Device0 = GeForce GTX 670 Result = PASS
4. 安装Intel MKL
(如果没有可以安装OpenBLAS代替)解压安装包,下面有一个install_GUI.sh文件, 执行该文件,会出现图形安装界面,根据说明一步一步执行即可。
1.安装 MKL
注意: 安装完成后需要添加library路径
sudo gedit /etc/ld.so.conf.d/intel_mkl.conf
在文件中添加内容
/opt/intel/lib /opt/intel/mkl/lib/intel642.或者 安装 OpenBLAS
Install ATLAS/MKL/OpenBLAS if you haven't already. $ sudo apt-get install libopenblas-dev or $ sudo apt-get install libopenblas-base
注意把路径替换成自己的安装路径。 编辑完后执行
sudo ldconfig
5. 安装OpenCV
这个尽量不要手动安装, Github上有人已经写好了完整的安装脚本:
https://github.com/jayrambhia/Install-OpenCV
下载该脚本,进入Ubuntu/2.4 目录, 给所有shell脚本加上可执行权限
chmod +x *.sh
然后安装最新版本 (当前为2.4.9)
(http://code.opencv.org/issues/3814 下载 NCVPixelOperations.hpp 替换掉opencv2.4.9内的文件,
重新build。)
sudo ./opencv2_4_9.sh
(注意,修改一下 文件里面的编译选项,一直开 make j4, 导致CPU 总是热导致停机,半途而废。
应修改为 j2 ,或者去掉j选项)
脚本会自动安装依赖项,下载安装包,编译并安装OpenCV。
整个过程大概半小时左右。
注意,中途可能会报错(这一次真的报错了!!!)
opencv-2.4.9/modules/gpu/src/nvidia/core/NCVPixelOperations.hpp(51): error: a storage class is not allowed in an explicit specialization
解决方法在此:http://code.opencv.org/issues/3814 下载 NCVPixelOperations.hpp 替换掉opencv2.4.9内的文件, 重新build。
6. 安装其他依赖项
Ubuntu14.04用户执行
sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libboost-all-dev libhdf5-serial-dev libgflags-dev libgoogle-glog-dev liblmdb-dev protobuf-compiler其他版本用户参考官方说明:http://caffe.berkeleyvision.org/installation.html
7. 安装Caffe所需要的Python环境
首先安装pip和python-dev (系统默认有python环境的, 不过我们需要的使python-dev)
sudo apt-get install python-dev python-pip
然后执行如下命令安装编译caffe python wrapper 所需要的额外包
for req in $(cat requirements.txt); do sudo pip install $req; done
在执行上述命令时, 会报错导致不能完全安装所有需要的包。 可以按照官方建议安装anaconda包。 在anaconda官网下载.sh文件,执行,最后添加bin目录到环境变量即可。
(下面的添加没用!一般不会用到)
建议安装Anaconda包,这个包能独立于系统自带的python库,并且提供大部分Caffe需要的科学运算Python库。这里需要注意,在运行Caffe时,可能会报一些找不到libxxx.so的错误,而用 locate libxxx.so命令发现已经安装在anaconda中,这时首先想到的是在/etc/ld.so.conf.d/ 下面将 $your_anaconda_path/lib 加入 LD_LIBRARY_PATH中。但是这样做可能导致登出后无法再进入桌面!!!原因(猜测)可能是anaconda的lib中有些内容于系统自带的lib产生冲突。
正确的做法是:为了不让系统在启动时就将anaconda/lib加入系统库目录,可以在用户自己的~/.bashrc 中添加library path, 比如我就在最后添加了两行
# add library path LD_LIBRARY_PATH=your_anaconda_path/lib:$LD_LIBRARY_PATH export LD_LIBRARY_PATH
开启另一个终端后即生效,并且重启后能够顺利加载lightdm, 进入桌面环境。
8. 安装MATLAB
Caffe提供了MATLAB接口, 有需要用MATLAB的同学可以额外安装MATLAB。
安装教程请自行搜索。
一般过程是:
1.下载matlab iso镜像文件(。搜索matlab unix版可得到,我下的是2010a)2. 打开终端,输入
sudo mkdir /mnt/temp (建立临时文件夹存放装载后的iso文件);
sudo mount -o loop /路径/Matlab.R2010a.UNIX.ISO-TBE.iso /mnt/temp (绿色路径为matlab iso文件所在位置),回车后装载镜像文件完成。
3. 创建安装matlab的文件夹(可以自己决定位置,但是要记住,后面会用到,eg: /usr/local/matlab)。
创建命令: sudo mkdir /usr/local/matlab
4. 开始安装sudo /mnt/temp/install 此时会弹出类似于windows下安装的图形化安装界面,选择不联网安装,
会提示输入序列号,序列号在 /mnt/temp/crack 文件夹下的install文件里,或者serials的TXT文件里。
选择安装路径为你在第三步创建的文件夹。安装接近最后 会问你是不是需要激活,选择不联网激活,
选择 /mnt/temp/crack 文件夹下的lic_standalone.dat文件或者serials 里面的lic文件即可。
激活成功!
5. 安装完成后卸载镜像文件。sudo umount /mnt/temp
************************ 至此安装部分顺利完成,接下来是如何启动 *********************************
1. 在终端启动,进入安装matlab的路径并进入bin文件夹,在终端输入./matlab -desktop
或者,linux桌面直接建立一个指向文件的快捷方式。
安装完成后添加图标 http://www.linuxidc.com/Linux/2011-01/31632.htm
sudo vi /usr/share/applications/Matlab.desktop
输入以下内容
[Desktop Entry] Type=Application Name=Matlab GenericName=Matlab 2010b Comment=Matlab:The Language of Technical Computing Exec=sh /usr/local/MATLAB/R2010b/bin/matlab -desktop Icon=/usr/local/MATLAB/Matlab.png Terminal=false Categories=Development;Matlab;
(I use the R2013b patched package. First you should uncompress the .iso file. Then usesudo cp to copy the patch file)
9. 编译Caffe
终于完成了所有环境的配置,可以愉快的编译Caffe了! 进入caffe根目录, 首先复制一份Makefile.config
cp Makefile.config.example Makefile.config
然后修改里面的内容,主要需要修改的参数包括
CPU_ONLY 是否只使用CPU模式,没有GPU没安装CUDA的同学可以打开这个选项
BLAS (使用intel mkl还是OpenBLAS)(由于我安装了atlas,所以不需要修改默认设置!)
MATLAB_DIR 如果需要使用MATLAB wrapper的同学需要指定matlab的安装路径,
如我的路径为 /usr/local/MATLAB/R2013b (注意该目录下需要包含bin文件夹,bin文件夹里应该包含mex二进制程序)
DEBUG 是否使用debug模式,打开此选项则可以在eclipse或者NSight中debug程序
完成设置后, 开始编译
make all -j4 make test make runtest
注意 -j4 是指使用几个线程来同时编译, 可以加快速度, j后面的数字可以根据CPU core的个数来决定, 我的CPU使4核, 所以-j4.
9.1. 编译Matlab wrapper
执行如下命令
make matcaffe
然后就可以跑官方的matlab demo啦。
9.2. 编译Python wrapper
make pycaffe
然后基本就全部安装完拉.
接下来大家尽情地跑demo吧~
----------------------------------
10. 安装cuDNN
为了加速Caffe,可以安装cuDNN,参见这篇文章:NVIDIA CuDNN 安装说明
11.使用MNIST数据集进行测试
Caffe默认情况会安装在CAFFEROOT,就是解压到那个目录,例如:
home/username/caffe-master,
所以下面的工作,默认已经切换到了该工作目录。下面的工作主要是,用于测试Caffe是否工作正常,不做详细评估。具体设置请参考官网:http://caffe.berkeleyvision.org/gathered/examples/mnist.html
$ cd data/mnist $ sudo sh ./get_mnist.sh
$ cd examples/mnist $ sudo sh ./create_mnist.sh (sudo sh examples/mnist/create_mnist.sh)
$ sudo sh examples/mnist/train_lenet.sh至此,Caffe安装的所有步骤完结,下面是一组简单的数据对比,实验来源于MNIST数据集,主要是考察一下不同系统下CPU和GPU的性能。可以看到明显的差别了,虽然MNIST数据集很简单,相信复杂得数据集,差别会更大,Ubuntu+GPU是唯一的选择了。
i7-4770K/16G/GTX 770/CUDA 6.5 MNIST Windows8.1 on CPU:620s MNIST Windows8.1 on GPU:190s MNIST Ubuntu 14.04 on CPU:270s MNIST Ubuntu 14.04 on GPU:160s MNIST Ubuntu 14.04 on GPU with cuDNN:35s Cifar10_full on GPU wihtout cuDNN:73m45s = 4428s (Iteration 70000) Cifar10_full on GPU with cuDNN:20m7s = 1207s (Iteration 70000)