PythonOpenCV:MLP用于最近邻搜索

一:简单C++版本的链接: http://blog.csdn.net/kaka20080622/article/details/9039749


      OpenCV的ml模块实现了人工神经网络(Artificial Neural Networks, ANN)最典型的多层感知器(multi-layer perceptrons, MLP)模型由于ml模型实现的算法都继承自统一的CvStatModel基类,其训练和预测的接口都是train(),predict(),非常简单。

     下面来看神经网络 CvANN_MLP 的使用~

定义神经网络及参数:

        //Setup the BPNetwork  
        CvANN_MLP bp;   
        // Set up BPNetwork's parameters  
        CvANN_MLP_TrainParams params;  
        params.train_method=CvANN_MLP_TrainParams::BACKPROP;  
        params.bp_dw_scale=0.1;  
        params.bp_moment_scale=0.1;  
        //params.train_method=CvANN_MLP_TrainParams::RPROP;  
        //params.rp_dw0 = 0.1;   
        //params.rp_dw_plus = 1.2;   
        //params.rp_dw_minus = 0.5;  
        //params.rp_dw_min = FLT_EPSILON;   
        //params.rp_dw_max = 50.;  

可以直接定义CvANN_MLP神经网络,并设置其参数。 BACKPROP表示使用back-propagation的训练方法,RPROP即最简单的propagation训练方法。

使用BACKPROP有两个相关参数:bp_dw_scale即bp_moment_scale:


使用PRPOP有四个相关参数:rp_dw0, rp_dw_plus, rp_dw_minus, rp_dw_min, rp_dw_max:


上述代码中为其默认值。

设置网络层数,训练数据:



    // Set up training data  
        float labels[3][5] = {{0,0,0,0,0},{1,1,1,1,1},{0,0,0,0,0}};  
        Mat labelsMat(3, 5, CV_32FC1, labels);  
      
        float trainingData[3][5] = { {1,2,3,4,5},{111,112,113,114,115}, {21,22,23,24,25} };  
        Mat trainingDataMat(3, 5, CV_32FC1, trainingData);  
        Mat layerSizes=(Mat_<int>(1,5) << 5,2,2,2,5);  
        bp.create(layerSizes,CvANN_MLP::SIGMOID_SYM);//CvANN_MLP::SIGMOID_SYM  
                                                   //CvANN_MLP::GAUSSIAN  
                                                   //CvANN_MLP::IDENTITY  
        bp.train(trainingDataMat, labelsMat, Mat(),Mat(), params);  

layerSizes设置了有三个隐含层的网络结构:输入层,三个隐含层,输出层。输入层和输出层节点数均为5,中间隐含层每层有两个节点。

create第二个参数可以设置每个神经节点的激活函数,默认为CvANN_MLP::SIGMOID_SYM,即Sigmoid函数,同时提供的其他激活函数有Gauss和阶跃函数。


使用训练好的网络结构分类新的数据:

然后直接使用predict函数,就可以预测新的节点:

    Mat sampleMat = (Mat_<float>(1,5) << i,j,0,0,0);  
                Mat responseMat;  
                bp.predict(sampleMat,responseMat);  

完整程序代码:

int CCvMLP::main()  
{  
	//Setup the BPNetwork  
	CvANN_MLP bp;   
	// Set up BPNetwork's parameters  
	CvANN_MLP_TrainParams params;  
	params.train_method=CvANN_MLP_TrainParams::BACKPROP;  
	params.bp_dw_scale=0.1;  
	params.bp_moment_scale=0.1;  
	//params.train_method=CvANN_MLP_TrainParams::RPROP;  
	//params.rp_dw0 = 0.1;   
	//params.rp_dw_plus = 1.2;   
	//params.rp_dw_minus = 0.5;  
	//params.rp_dw_min = FLT_EPSILON;   
	//params.rp_dw_max = 50.;  

	// Set up training data  
	float labels[3][5] = {{0,0,0,0,0},{1,1,1,1,1},{0,0,0,0,0}};  
	Mat labelsMat(3, 5, CV_32FC1, labels);  

	float trainingData[3][5] = { {1,2,3,4,5},{111,112,113,114,115}, {21,22,23,24,25} };  
	Mat trainingDataMat(3, 5, CV_32FC1, trainingData);  
	Mat layerSizes=(Mat_<int>(1,5) << 5,2,2,2,5);  
	bp.create(layerSizes,CvANN_MLP::SIGMOID_SYM);//CvANN_MLP::SIGMOID_SYM  
	//CvANN_MLP::GAUSSIAN  
	//CvANN_MLP::IDENTITY  
	bp.train(trainingDataMat, labelsMat, Mat(),Mat(), params);  


	// Data for visual representation  
	int width = 512, height = 512;  
	Mat image = Mat::zeros(height, width, CV_8UC3);  
	Vec3b green(0,255,0), blue (255,0,0);  
	// Show the decision regions given by the SVM  
	for (int i = 0; i < image.rows; ++i)  
		for (int j = 0; j < image.cols; ++j)  
		{  
			Mat sampleMat = (Mat_<float>(1,5) << i,j,0,0,0);  
			Mat responseMat;  
			bp.predict(sampleMat,responseMat);  
			float* p=responseMat.ptr<float>(0);  
			int response=0;  
			for(int i=0;i<5;i++){  
				//  cout<<p[i]<<" ";  
				response+=p[i];  
			}  
			if (response >2)  
				image.at<Vec3b>(j, i)  = green;  
			else    
				image.at<Vec3b>(j, i)  = blue;  
		}  

		// Show the training data  
		int thickness = -1;  
		int lineType = 8;  
		circle( image, Point(501,  10), 5, Scalar(  0,   0,   0), thickness, lineType);  
		circle( image, Point(255,  10), 5, Scalar(255, 255, 255), thickness, lineType);  
		circle( image, Point(501, 255), 5, Scalar(255, 255, 255), thickness, lineType);  
		circle( image, Point( 10, 501), 5, Scalar(255, 255, 255), thickness, lineType);  

		imwrite("result.png", image);        // save the image   

		imshow("BP Simple Example", image); // show it to the user  
		waitKey(0);  
} 

运行结果:

     


二:MLP用于图像分类:












二:MLP的Python版本:




posted @ 2016-05-18 19:18  wishchin  阅读(315)  评论(0编辑  收藏  举报