python nltk 学习笔记(5) Learning to Classify Text
Posted on 2014-03-25 12:01 wintor12 阅读(478) 评论(0) 编辑 收藏 举报>>> def gender_features(word):
... return {'last_letter': word[-1]}
>>> gender_features('Shrek')
{'last_letter': 'k'}
>>> from nltk.corpus import names
>>> import random
>>> names = ([(name, 'male') for name in names.words('male.txt')] +
... [(name, 'female') for name in names.words('female.txt')])
>>> import random
>>> random.shuffle(names)
>>> featuresets = [(gender_features(n), g) for (n,g) in names]
>>> train_set, test_set = featuresets[500:], featuresets[:500]
>>> classifier = nltk.NaiveBayesClassifier.train(train_set)
>>> classifier.classify(gender_features('Neo'))
'male'
>>> classifier.classify(gender_features('Trinity'))
'female'
>>> print nltk.classify.accuracy(classifier, test_set)
0.758