服务网格(Service Mesh)是致力于解决服务间通讯的基础设施层。它负责在现代云原生应用程序的复杂服务拓扑来可靠地传递请求。实际上,Service Mesh 通常是通过一组轻量级网络代理(Sidecar proxy),与应用程序代码部署在一起来实现,而无需感知应用程序本身。

image

image

数据面

  • Service discovery: What are all of the upstream/backend service instances that are available?
  • Health checking: Are the upstream service instances returned by service discovery healthy and ready to accept network traffic? This may include both active (e.g., out-of-band pings to a /healthcheck endpoint) and passive (e.g., using 3 consecutive 5xx as an indication of an unhealthy state) health checking.
  • Routing: Given a REST request for /foo from the local service instance, to which upstream service cluster should the request be sent?
  • Load balancing: Once an upstream service cluster has been selected during routing, to which upstream service instance should the request be sent? With what timeout? With what circuit breaking settings? If the request fails should it be retried?
  • Authentication and authorization: For incoming requests, can the caller be cryptographically attested using mTLS or some other mechanism? If attested, is the caller allowed to invoke the requested endpoint or should an unauthenticated response be returned?
  • Observability: For each request, detailed statistics, logging, and distributed tracing data should be generated so that operators can understand distributed traffic flow and debug problems as they occur.

控制面

    image

    • The human: There is still a (hopefully less grumpy) human in the loop making high level decisions about the overall system.
    • Control plane UI: The human interacts with some type of UI to control the system. This might be a web portal, a CLI, or some other interface. Through the UI, the operator has access to global system configuration settings such as deploy control (blue/green and/or traffic shifting), authentication and authorization settings, route table specification (e.g., when service A requests /foo what happens), and load balancer settings (e.g., timeouts, retries, circuit breakers, etc.).
    • Workload scheduler: Services are run on an infrastructure via some type of scheduling system (e.g., Kubernetes or Nomad). The scheduler is responsible for bootstrapping a service along with its sidecar proxy.
    • Service discovery: As the scheduler starts and stops service instances it reports liveness state into a service discovery system.
    • Sidecar proxy configuration APIs: The sidecar proxies dynamically fetch state from various system components in an eventually consistent way without operator involvement. The entire system composed of all currently running service instances and sidecar proxies eventually converge.

  目前行业流行数据planes与控制planes:

image

image

image

image

image

image


image

image

image

image

image

场景

image

image

image

image

image


XNoL2ltZ3MvYWJpbGl0eTIucG5n

另一案例是:

基于 Istio+Envoy 的方案:

  • 数据面以 Envoy Proxy 作为代理组件
  • 控制面以 Pilot 为核心组件
  • 平台开放与扩展主要通过 Kubernetes CRD与Mesh Configuration Protocol(简称为 MCP,一套标准 GRPC 协议)
  • 高可用设计主要基于 Kubernetes 及 Istio 机制实现

image



今天先到这儿,希望对云原生,技术领导力, 企业管理,系统架构设计与评估,团队管理, 项目管理, 产品管理,团队建设 有参考作用 , 您可能感兴趣的文章:
领导人怎样带领好团队
构建创业公司突击小团队
国际化环境下系统架构演化
微服务架构设计
视频直播平台的系统架构演化
微服务与Docker介绍
Docker与CI持续集成/CD
互联网电商购物车架构演变案例
互联网业务场景下消息队列架构
互联网高效研发团队管理演进之一
消息系统架构设计演进
互联网电商搜索架构演化之一
企业信息化与软件工程的迷思
企业项目化管理介绍
软件项目成功之要素
人际沟通风格介绍一
精益IT组织与分享式领导
学习型组织与企业
企业创新文化与等级观念
组织目标与个人目标
初创公司人才招聘与管理
人才公司环境与企业文化
企业文化、团队文化与知识共享
高效能的团队建设
项目管理沟通计划
构建高效的研发与自动化运维
某大型电商云平台实践
互联网数据库架构设计思路
IT基础架构规划方案一(网络系统规划)
餐饮行业解决方案之客户分析流程
餐饮行业解决方案之采购战略制定与实施流程
餐饮行业解决方案之业务设计流程
供应链需求调研CheckList
企业应用之性能实时度量系统演变
Openshift与Kubernetes的区别

如有想了解更多软件设计与架构, 系统IT,企业信息化, 团队管理 资讯,请关注我的微信订阅号:

MegadotnetMicroMsg_thumb1_thumb1_thu[2]

作者:Petter Liu
出处:http://www.cnblogs.com/wintersun/
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。 该文章也同时发布在我的独立博客中-Petter Liu Blog。

posted on 2020-11-07 12:48  PetterLiu  阅读(590)  评论(0编辑  收藏  举报