石子合并(直线版+环形版)&(朴素写法+四边形优化+GarsiaWachs算法)

石子合并-直线版

(点击此处查看题目)

朴素写法

最简单常见的写法就是通过枚举分割点,求出每个区间合并的最小花费,从而得到整个区间的最小花费,时间复杂度为O(n^3),核心代码如下:

        for (int i = 1; i < n; i++)
        {
            for (int j = 1; j + i <= n; j++)
            {
                int e = j + i;
                dp[j][e] = inf;
                for (int k = j; k + 1 <= e; k++)
                {
                    dp[j][e] = min(dp[j][e], dp[j][k] + dp[k + 1][e] + sum[e] - sum[j - 1]);
                }
            }
        }
View Code

 四边形优化

对于函数f[][](在这里可以看作数组),如果满足 f[a][c] + f[b][d] <= f[b][c] + f[a][d],则f满足四边形不等式,即 f[i][j-1] <= f[i][j] <= f[i+1][j]

记s[i][j]表示取得dp[i][j]的最优解的分割点,稍加证明即可发现其满足四边形不等式

注意到,在朴素写法中,我们需要枚举分割点来求解:dp[i][j] = max(dp[i][j],dp[i][k]+dp[k+1][j] + sum[j] - sum[i-1]) {i <= k <= j ) ,而因为 s[i][j-1] <= s[i][j] <= s[i+1][j],所以我们枚举的最优分割点s[i][j]的范围即[ s[i][j-1],s[i+1][j] ] ,所以我们枚举分割点的时候,就直接枚举区间[ s[i][j-1],s[i+1][j] ] 而不用枚举[i,j],这样一来,时间复杂度就是O(n^2),核心代码如下:

    for (int i = 1; i <= n; i++)                //枚举右端点-左端点的值
    {
        for (int j = 1; j + i <= n; j++)            //枚举区间左端点
        {
            int e = j + i;                        //区间右端点
            dp[j][e] = inf;
            for (int k = s[j][e - 1]; k <= s[j + 1][e]; k++)
            {
                if (dp[j][e] > dp[j][k] + dp[k + 1][e] + sum[e] - sum[j - 1])
                {
                    dp[j][e] = dp[j][k] + dp[k + 1][e] + sum[e] - sum[j - 1];
                    s[j][e] = k;
                }
            }
        }
    }
View Code 

GarsiaWachs算法

这个方法是我觉得最优的解法了,时间复杂度为O(nlogn),比四边形优化更快,具体原理理解不足,就先贴上大佬的解析吧

解决这类问题的大概步骤是:

0.证明w满足四边形不等式,这里w是m的附属量,形如m[i,j]=opt{m[i,k]+m[k,j]+w[i,j]},此时大多要先证明w满足条件才能进一步证明m满足条件

1.证明m满足四边形不等式

2.证明s[i,j-1]≤s[i,j]≤s[i+1,j]

 

设序列是stone[],从左往右,找一个满足stone[k-1] <= stone[k+1]的k,找到后合并stone[k]和stone[k-1],再从当前位置开始向左找最大的j,使其满足stone[j] > stone[k]+stone[k-1],插到j的后面就行。一直重复,直到只剩下一堆石子就可以了。在这个过程中,可以假设stone[-1]和stone[n]是正无穷的。

举个例子:186 64 35 32 103

因为35<103,所以最小的k是3,我们先把35和32删除,得到他们的和67,并向前寻找一个第一个超过67的数,把67插入到他后面,得到:186 67 64 103,现在由5个数变为4个数了,继续:186 131 103,现在k=2(别忘了,设A[-1]和A[n]等于正无穷大)234 186,最后得到420。最后的答案呢?就是各次合并的重量之和,即420+234+131+67=852。

基本思想是通过树的最优性得到一个节点间深度的约束,之后证明操作一次之后的解可以和原来的解一一对应,并保证节点移动之后他所在的深度不会改变。具体实现这个算法需要一点技巧,精髓在于不停快速寻找最小的k,即维护一个“2-递减序列”朴素的实现的时间复杂度是O(n*n),但可以用一个平衡树来优化,使得最终复杂度为O(nlogn)。
(解析出自:https://blog.csdn.net/bao___zi/article/details/81913096)

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
#include<string>
#include<fstream>
#include<vector>
#include<stack>
#include <map>
#include <iomanip>

#define bug cout << "**********" << endl
#define show(x, y) cout<<"["<<x<<","<<y<<"] "
#define LOCAL = 1;
using namespace std;
typedef long long ll;
const int inf = 1e9 + 7;
const ll mod = 1e9 + 7;
const int Max = 4e4 + 10;

int n;
int val[40010], len;
int sum;

void combine(int k)
{
    int add = val[k] + val[k - 1];            //合并
    sum += add;                                //累加合并的值

    for (int i = k; i < len; i++)           //k之后的数前移一个位置
    {
        val[i] = val[i + 1];
    }
    len--;                                    //合并后,总长度减一
    int pos = k - 1;
    while (pos > 0 && val[pos - 1] < add)    //找到k前的第一个大于add的数
    {
        val[pos] = val[pos - 1];
        pos--;
    }
    val[pos] = add;                            //插入第一个比add大的数后面
    while (pos >= 2 && val[pos] >= val[pos - 2])
    {
        int res = len - pos;                //记录pos之后的元素个数,相当于跳过了,后面要补上
        combine(pos - 1);                //合并
        pos = len - res;                    //后面那一段仍然跳过
    }
}

int main()
{
    scanf("%d", &n);
    for (int i = 0; i < n; i++)
    {
        scanf("%d", val + i);
    }
    len = 1;                    //跳过第一个
    sum = 0;
    for (int i = 1; i < n; i++)
    {
        val[len++] = val[i];    //将值加在尾部
        while (len >= 3 && val[len - 3] < val[len - 1])
        {
            combine(len - 2);
        }
    }
    while (len > 1)
        combine(len - 1);
    printf("%d\n", sum);
    return 0;
}
View Code

石子合并-环形版

(点击此处查看例题)

相比于直线版的,环形版可以从每一个点j开始,合并其后i堆石子为一堆,1 <= i <= n-1 ,合并的区间长度不受j的影响,而直线版的i满足: 1 <= i <= n - j ,合并的区间收到j的影响,那么我们就将整个环拆成n段链,求出合并这n段链中得分最大(小)者即可,其余操作和直线版一样

朴素写法

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
#include<string>
#include<fstream>
#include<vector>
#include<stack>
#include <map>
#include <iomanip>

#define bug cout << "**********" << endl
#define show(x, y) cout<<"["<<x<<","<<y<<"] "
#define LOCAL = 1;
using namespace std;
typedef long long ll;
const int inf = 1e7 + 7;
const ll mod = 1e9 + 7;
const int Max = 2e2 + 10;

int n;
int a[205];
int sum[205];
int dp1[205][205], dp2[205][205];

int main()
{
#ifdef LOCAL
//    freopen("input.txt", "r", stdin);
//    freopen("output.txt", "w", stdout);
#endif
    scanf("%d", &n);
    for (int i = 1; i <= 2 * n; i++)
    {
        if (i <= n)
            scanf("%d", a + i), a[i + n] = a[i];

        sum[i] = sum[i - 1] + a[i];
    }
    for (int i = 1; i < n; i++)
    {
        for (int j = 1; j + i <= 2 * n; j++)
        {
            int e = i + j;
            dp1[j][e] = inf;
            dp2[j][e] = -1;
            for (int k = j; k + 1 <= e; k++)
            {
                dp1[j][e] = min(dp1[j][e], dp1[j][k] + dp1[k + 1][e] + sum[e] - sum[j - 1]);
                dp2[j][e] = max(dp2[j][e], dp2[j][k] + dp2[k + 1][e] + sum[e] - sum[j - 1]);
            }
        }
    }
    int min_val = inf, max_val = 0;
    for (int i = 1; i <= n; i++)
    {
        min_val = min(min_val, dp1[i][i + n - 1]);
        max_val = max(max_val, dp2[i][i + n - 1]);
    }
    printf("%d\n%d\n", min_val, max_val);
    return 0;
}
View Code

四边形优化写法(目前只能求最小代价)

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
#include<string>
#include<fstream>
#include<vector>
#include<stack>
#include <map>
#include <iomanip>

#define bug cout << "**********" << endl
#define show(x, y) cout<<"["<<x<<","<<y<<"] "
#define LOCAL = 1;
using namespace std;
typedef long long ll;
const int inf = 1e7 + 7;
const ll mod = 1e9 + 7;
const int Max = 1e3 + 10;

int n;
int a[Max<<1];
int sum[Max];
int dp[Max][Max],s[Max][Max];


int main()
{
#ifdef LOCAL
    //    freopen("input.txt", "r", stdin);
    //    freopen("output.txt", "w", stdout);
#endif
    scanf("%d", &n);
    for (int i = 1; i <= 2 * n; i++)
    {
        if (i <= n)
            scanf("%d", a + i), a[i + n] = a[i];

        sum[i] = sum[i - 1] + a[i];
        s[i][i] = i;
    }
    for (int i = 1; i < n; i++)
    {
        for (int j = 1; j + i <= 2 * n; j++)
        {
            int e = i + j;
            dp[j][e] = inf;
            for (int k = s[j][e-1]; k <= s[j+1][e]; k++)
            {
                if(dp[j][e] > dp[j][k] + dp[k + 1][e] + sum[e] - sum[j - 1])
                {
                    dp[j][e] = dp[j][k] + dp[k + 1][e] + sum[e] - sum[j - 1];
                    s[j][e] = k;
                }
            }
        }
    }
    int min_val = inf;
    for (int i = 1; i <= n; i++)
    {
        min_val = min(min_val, dp[i][i + n - 1]);
    }
    printf("%d\n", min_val);
    return 0;
}
View Code
posted @ 2019-09-05 18:56  winter-bamboo  阅读(348)  评论(0编辑  收藏  举报