Cycle Indicator Functions周期指标函数
希尔伯特变换(Hilbert Transform)是积分变换中的一种,在信号处理领域得到了广泛的应用,而在工程中常用于窄带数字信号的处理。金融市场的波动是非周期、不规律的,但只要存在波动,就可以通过希尔伯特变换寻找其“周期性”。对于股价走势,一般可将其分解为:长期趋势、中短期周期性波动和噪声。在去除长期趋势的情况下,可以利用希尔伯特变换对中短期的周期性波动进行分析。
HT_DCPERIOD: Hilbert Transform-Dominant Cycle Period 希尔伯特变换-主导周期:
ta.HT_DCPERIOD(close),计算价格的周期位置,用作择时的依据。
HT_DCPHASE: Hilbert Transform-Dominant Cycle Phase 希尔伯特变换-主导循环阶段:
ta.HT_DCPHASE(close)
HT_PHASOR: Hilbert Transform-Phasor Components 希尔伯特变换-相位构成:
inphase, quadrature = ta.HT_PHASOR(close), 分解为同相分量和正交分量
HT_SINE: Hilbert Transform-SineWave 希尔伯特变换-正弦波:
sine, leadsine = ta.HT_SINE(close)
HT_TRENDMODE: Hilbert Transform-Trend vs Cycle Mode 希尔伯特变换-趋势与周期模式
ta.HT_TRENDMODE(close)
import pandas as pd import numpy as np import matplotlib.pyplot as plt import talib as ta import tushare as ts plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False def get_data(code, start='2015-01-01'): df = ts.get_k_data(code, start) df.index = pd.to_datetime(df.date) df = df.sort_index() return df df = get_data('sh')[['open','close','high','low']] df['dcperiod'] = ta.HT_DCPERIOD(df.close) df['dcphase'] = ta.HT_DCPHASE(df.close) df['inhpase'], df['quadrature'] = ta.HT_PHASOR(df.close) df['sine'], df['leadsine'] = sine, leadsine = ta.HT_SINE(df.close) df['trendmode'] = ta.HT_TRENDMODE(df.close) df[['close','dcperiod','dcphase','inhpase', 'quadrature','sine','leadsine','trendmode'] ].plot(figsize=(20,18), subplots=True, layout=(4,2)) plt.subplots_adjust(wspace=0, hspace=0.2)
sdafsd
分类:
金融技术分析
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 地球OL攻略 —— 某应届生求职总结
· 周边上新:园子的第一款马克杯温暖上架
· 提示词工程——AI应用必不可少的技术
· Open-Sora 2.0 重磅开源!