Edit Distance
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)
You have the following 3 operations permitted on a word:
a) Insert a character
b) Delete a character
c) Replace a character
题解:
处理这道题也是用动态规划。
动态数组dp[word1.length+1][word2.length+1]
dp[i][j]表示从word1前i个字符转换到word2前j个字符最少的步骤数。
假设word1现在遍历到字符x,word2遍历到字符y(word1当前遍历到的长度为i,word2为j)。
以下两种可能性:
1. x==y,那么不用做任何编辑操作,所以dp[i][j] = dp[i-1][j-1]
2. x != y
(1) 在word1插入y, 那么dp[i][j] = dp[i][j-1] + 1
(2) 在word1删除x, 那么dp[i][j] = dp[i-1][j] + 1
(3) 把word1中的x用y来替换,那么dp[i][j] = dp[i-1][j-1] + 1
最少的步骤就是取这三个中的最小值。
最后返回 dp[word1.length+1][word2.length+1] 即可。
public class Solution { public int minDistance(String word1, String word2) { int len1 = word1.length(); int len2 = word2.length(); // len1+1, len2+1, because finally return dp[len1][len2] int[][] dp = new int[len1 + 1][len2 + 1]; for (int i = 0; i <= len1; i++) dp[i][0] = i; for (int j = 0; j <= len2; j++) dp[0][j] = j; //iterate though, and check last char for (int i = 1; i <= len1; i++) { char c1 = word1.charAt(i-1); for (int j = 1; j <= len2; j++) { char c2 = word2.charAt(j-1); //if last two chars equal if (c1 == c2) { //update dp value for +1 length dp[i][j] = dp[i-1][j-1]; } else { int replace = dp[i-1][j-1] + 1; int delete = dp[i-1][j] + 1; int insert = dp[i][j-1] + 1; int min = Math.min(replace, insert); min = Math.min(min,delete); dp[i][j] = min; } } } return dp[len1][len2]; } }