Loading

🔥 LeetCode 热题 HOT 100(51-60)

142. 环形链表 II

思路:快慢指针,快慢指针相遇后,慢指针回到头,快慢指针步伐一致一起移动,相遇点即为入环点

/**
 * Definition for singly-linked list.
 * class ListNode {
 *     int val;
 *     ListNode next;
 *     ListNode(int x) {
 *         val = x;
 *         next = null;
 *     }
 * }
 */
public class Solution {
    public ListNode detectCycle(ListNode head) {
        // 没有结点或只有一个非自环结点
        if (head == null || head.next == null) {
            return null;
        }

        ListNode slow = head;
        ListNode fast = head.next;

        while (fast != null && fast.next != null) {
            fast = fast.next.next;
            slow = slow.next;

            if (fast == slow) {
                //快指针从第一次相交点下一个节点开始移动, 慢指针重新从头开始移动
                fast = fast.next;  //注意
                slow = head;

                while (fast != slow) {
                    fast = fast.next;
                    slow = slow.next;
                }

                // 相遇点即为入环点
                return fast;
            }
        }

        return null;
    }
}

146. LRU 缓存机制

class LRUCache {
    // 用 map 我们可以实现常数复杂度的get,但无法记录各个页面的先后顺序。
    // 因此引入双向链表来记录页面先后顺序。

    private Map<Integer, Node> map;
    private Node head;
    private Node tail;
    private int capacity;
    private int size = 0;

    public LRUCache(int capacity) {
        this.map = new HashMap<>();
        this.head = new Node(-1, -1);
        this.tail = new Node(-1, -1);
        head.next = tail;
        tail.pre = head;
        this.capacity = capacity;
    }
    
    public int get(int key) {
        if (map.containsKey(key)) {
            Node temp = map.get(key);
            moveToHead(temp);
            return temp.val;
        } else {
            return -1;
        }
    }
    
    public void put(int key, int value) {
        if (map.containsKey(key)) {
            Node temp = map.get(key);
            temp.val = value;
            moveToHead(temp);
        } else {
            if (size >= capacity) {
                Node tempTail = removeTail();
                int tempKey = tempTail.key;
                map.remove(tempKey);
                size--;
            }

            Node newNode = new Node(key, value);
            map.put(key, newNode);
            addHead(newNode);
            size++;
        }
    }

    private void moveToHead(Node node) {
        removeNode(node);
        addHead(node);
    }

    private Node removeTail() {
        Node temp = tail.pre;
        removeNode(temp);
        
        return temp;
    }

    private void removeNode(Node node) {
        node.next.pre = node.pre;
        node.pre.next = node.next;
    }

    private void addHead(Node node) {
        node.next = head.next;
        node.pre = head;

        head.next = node;
        node.next.pre = node;
    }
}

class Node {
    Node pre;
    Node next;
    int key;
    int val;

    Node(int key, int val) {
        this.key = key;
        this.val = val;
    }
}

/**
 * Your LRUCache object will be instantiated and called as such:
 * LRUCache obj = new LRUCache(capacity);
 * int param_1 = obj.get(key);
 * obj.put(key,value);
 */

148. 排序链表

思路:O(nlogn)的复杂度实现排序可以考虑 归并 或 快速 排序。

归并排序:

/**
 * Definition for singly-linked list.
 * public class ListNode {
 *     int val;
 *     ListNode next;
 *     ListNode() {}
 *     ListNode(int val) { this.val = val; }
 *     ListNode(int val, ListNode next) { this.val = val; this.next = next; }
 * }
 */
class Solution {
    public ListNode sortList(ListNode head) {
        return mergeSort(head);
    }

    private ListNode mergeSort(ListNode head) {
        // base case
        if (head == null || head.next == null) {
            return head;
        }

        ListNode mid = getMidNode(head);
        ListNode temp = mid.next;
        mid.next = null;

        ListNode l1 = mergeSort(head);
        ListNode l2 = mergeSort(temp);

        return merge(l1, l2);
    }

    // 快慢指针找中点
    private ListNode getMidNode(ListNode head) {
        ListNode slow = head; 
        ListNode fast = head.next;

        while (fast != null && fast.next != null) {
            fast = fast.next.next;
            slow = slow.next;
        }

        return slow;
    }

    // 合并两个链表
    private ListNode merge(ListNode l1, ListNode l2) {
        ListNode dummy = new ListNode(-1);
        ListNode temp = dummy;

        while (l1 != null && l2 != null) {
            if (l1.val < l2.val) {
                temp.next = l1;
                l1 = l1.next;
            } else {
                temp.next = l2;
                l2 = l2.next;
            }

            temp = temp.next;
        }

        if (l1 != null) {
            temp.next = l1;
        } else if (l2 != null) {
            temp.next = l2;
        }

        return dummy.next;
    }
}

快速排序:

class Solution {
    public ListNode sortList(ListNode head) {
        return quickSort(head, null);
    }

    // start, end 之间进行快速排序,左闭右开
    private ListNode quickSort(ListNode start, ListNode end) {
        // base case
        if (start == end || start.next == end) {
            return start;
        }
        // 选择第一个结点为pivot
        ListNode pivot = start;
        // left, right 都指向pivot
        ListNode left = pivot, right = pivot;

        // 遍历 pivot 之后,end之前的所有结点,将小于 pivot 的放到 pivot 之前;否者放到 pivot 后面
        ListNode cur = pivot.next;
        while (cur != end) {
            // 下面的插入操作会修改 cur.next
            ListNode next = cur.next;

            if (cur.val < pivot.val) {
                cur.next = left;
                left = cur;
            } else {
                right.next = cur;
                right = cur;
            }

            cur = next;
        }

        // 重要,将操作好的链表的末尾指向 end
        right.next = end;
        
        ListNode pre = quickSort(left, pivot);
        ListNode post = quickSort(pivot.next, end);
        // 重要,前后两段链表通过 pivot 连接起来
        pivot.next = post;

        return pre;
    }
}

152. 乘积最大子数组

class Solution {
    public int maxProduct(int[] nums) {
        int len = nums.length;
        
        // 状态: dp[i][0]:以下标i结尾的子数组的最大乘积
        //       dp[i][1]:以下标i结尾的子数组的最小乘积
        int[][] dp = new int[len][2];

        //base case
        dp[0][0] = nums[0];
        dp[0][1] = nums[0];

        int max = nums[0];
        for (int i = 1; i < len; i++) {
            if (nums[i] > 0) {
                dp[i][0] = Math.max(nums[i], nums[i] * dp[i - 1][0]);
                dp[i][1] = Math.min(nums[i], nums[i] * dp[i - 1][1]);
            } else {
                dp[i][0] = Math.max(nums[i], nums[i] * dp[i - 1][1]);
                dp[i][1] = Math.min(nums[i], nums[i] * dp[i - 1][0]);
            }

            max = Math.max(max, dp[i][0]);
        }

        return max;
    }
}

155. 最小栈

class MinStack {

    /** initialize your data structure here. */
    private Deque<Integer> stack;
    // 用额外一个栈存储最小值
    private Deque<Integer> minstack;
    public MinStack() {
        stack = new LinkedList<>();
        minstack = new LinkedList<>();
    }
    
    public void push(int val) {
        stack.push(val);
        if (minstack.isEmpty() || val < minstack.peek()) {
            minstack.push(val);
        } else {
            minstack.push(minstack.peek());
        }
    }
    
    public void pop() {
        stack.pop();
        minstack.pop();
    }
    
    public int top() {
        return stack.peek();
    }
    
    public int getMin() {
        return minstack.peek();
    }
}

/**
 * Your MinStack object will be instantiated and called as such:
 * MinStack obj = new MinStack();
 * obj.push(val);
 * obj.pop();
 * int param_3 = obj.top();
 * int param_4 = obj.getMin();
 */

160. 相交链表

思路:指向两个链表的指针一起分别向后移,如果没有剩余元素就移动到另一条链表,然后继续后移。如果有交点,相遇时就不为null

/**
 * Definition for singly-linked list.
 * public class ListNode {
 *     int val;
 *     ListNode next;
 *     ListNode(int x) {
 *         val = x;
 *         next = null;
 *     }
 * }
 */
public class Solution {
    public ListNode getIntersectionNode(ListNode headA, ListNode headB) {
        ListNode lA = headA, lB = headB;
        
        while (lA != lB) {
            lA = lA == null ? headB : lA.next;
            lB = lB == null ? headA : lB.next;
        }

        return lA;
    }
}

169. 多数元素

思路一:用map记录每个元素的出现次数:

class Solution {
    public int majorityElement(int[] nums) {
        int threshold = nums.length / 2;

        Map<Integer, Integer> map = new HashMap<>();
        for (int num : nums) {
            map.put(num, map.getOrDefault(num, 0) + 1);
            if (map.get(num) > threshold) {
                return num;
            }
        }

        throw new IllegalArgumentException("majority element not exist!");
    }
}

思路二:排序:

class Solution {
    public int majorityElement(int[] nums) {
        Arrays.sort(nums);
        return nums[nums.length / 2];
    }
}

思路三:摩尔投票,很简单:记录当前字符和出现频次,如果字符相同则频次加1,否则减1,减1后若频次为0则直接更换当前字符和频次。

class Solution {
    public int majorityElement(int[] nums) {
        int curElement = nums[0];
        int cnt = 1;

        for (int i = 1; i < nums.length; i++) {
            if (curElement == nums[i]) {
                cnt++;
            } else {
                cnt--;
                if (cnt == 0) {
                    curElement = nums[i];
                    cnt = 1;
                }
            }
        }

        return curElement;
    }
}

198. 打家劫舍

思路:动态规划

class Solution {
    public int rob(int[] nums) {
        int len = nums.length;
		//状态: dp[i] 表示 有i间房屋时可以偷窃的最大金额
        int[] dp = new int[len + 1];

        //base case
        dp[0] = 0;
        dp[1] = nums[0];

        int max = nums[0];
        for (int i = 2; i < len + 1; i++) {
            // 第 i - 1 个房间 可以偷, 也可以不偷
            dp[i] = Math.max(dp[i - 1], dp[i - 2] + nums[i - 1]);
            max = Math.max(max, dp[i]);
        }

        return max;
    }
}

200. 岛屿数量

思路:DFS。

  • 对于二维矩阵中每个结点来说,他有上、下、左、右四个邻居,可以将每个岛屿都看成一个图。
  • 从任意一个陆地进入开始遍历,遍历完1次就代表发现了一个岛屿。 注:图不像树那样是有向的,遍历可能会访问重复结点,一般需要用额外结构表示结点是否已经被访问过。此题可以直接在矩阵上将1修改为2表示结点已经访问过。

在原矩阵中标记是否访问过:

class Solution {
    public int numIslands(char[][] grid) {
        int count = 0;
        for (int i = 0; i < grid.length; i++) {
            for (int j = 0; j < grid[0].length; j++) {
                if (grid[i][j] == '1') {
                    dfs(grid, i, j);
                    count++;
                }
            }
        }
        
        return count;
    }

    private void dfs(char[][] grid, int row, int col) {
        //base case
        if (!inArea(grid, row, col)) {
            return;
        }

        if (grid[row][col] != '1') {
            return;
        }

        //已访问
        grid[row][col] = '2';

        dfs(grid, row + 1, col);
        dfs(grid, row - 1, col);
        dfs(grid, row, col + 1);
        dfs(grid, row, col - 1);
    }

    private boolean inArea(char[][] grid, int row, int col) {
        return row >= 0 && row < grid.length &&
            col >= 0 && col < grid[0].length;
    }
}

使用额外空间标记是否已经访问过:

class Solution {

    // 标记是否访问过
    private boolean[][] visited;

    public int numIslands(char[][] grid) {
        int row = grid.length;
        int col = grid[0].length;
        visited = new boolean[row][col];

        int cnt = 0;

        for (int i = 0; i < row; i++) {
            for (int j = 0; j < col; j++) {
                if (grid[i][j] == '1' && !visited[i][j]) {
                    dfs(grid, i, j);
                    cnt++;
                }
            }
        }

        return cnt;
    }

    

    private void dfs (char[][] grid, int i, int j) {
        if (!inArea(grid, i, j)) {
            return;
        }

        if (grid[i][j] != '1' || visited[i][j]) {
            return;
        }

        visited[i][j] = true;

        dfs(grid, i + 1, j);
        dfs(grid, i, j + 1);
        dfs(grid, i - 1, j);
        dfs(grid, i, j - 1);
    }

    private boolean inArea(char[][] grid, int row, int col) {
        return row >= 0 && row < grid.length &&
            col >= 0 && col < grid[0].length;
    }
}

推荐阅读:岛屿类问题的通用解法、DFS 遍历框架最大人工岛

206. 反转链表

思路一:迭代法:

/**
 * Definition for singly-linked list.
 * public class ListNode {
 *     int val;
 *     ListNode next;
 *     ListNode() {}
 *     ListNode(int val) { this.val = val; }
 *     ListNode(int val, ListNode next) { this.val = val; this.next = next; }
 * }
 */
class Solution {
    public ListNode reverseList(ListNode head) {
        //始终指向当前结点的前一个结点
        ListNode pre = null;
        //当前结点
        ListNode cur = head;

        while (cur != null) {
            //用来保存当前结点的下一个结点
            ListNode next = cur.next;

            cur.next = pre;
            pre = cur;
            
            cur = next;
        }

        return pre;
    }
}

思路二:递归(锻炼递归思维):

  • 首先给出函数定义,如此题:ListNode reverseList(ListNode head)

    1. 反转以head为头结点的链表
    2. 返回反转后链表的头结点
  • 不要用脑袋去模拟递归栈,根据函数的定义去处理递归的子问题,即具体到一个结点要做的事情

  • 确定base case

class Solution {
    public ListNode reverseList(ListNode head) {
        if (head == null) {
            return head;
        }

        //base case, 当链表只有一个结点时退出递归
        if (head.next == null) {
            return head;
        }

        /**
         * 具体到头结点来说,反转当前链表只需要两步:
         *  1.反转以head.next为头的链表
         *  2.将head插入head.next为头的链表反转之后的链表末尾
         */
        ListNode vhead = reverseList(head.next); //根据递归函数定义,返回反转之后的链表头

        //反转之后head.next位于链表尾部,将head插入head.next之后
        head.next.next = head;
        head.next = null;

        return vhead;
    }
}
posted @ 2021-07-06 16:43  WINLSR  阅读(57)  评论(0编辑  收藏  举报