【题解】#6622. 「THUPC 2019」找树 / findtree(Matrix Tree+FWT)
【题解】#6622. 「THUPC 2019」找树 / findtree(Matrix Tree+FWT)
之前做这道题不理解,有一点走火入魔了,甚至想要一本近世代数来看,然后通过人类智慧思考后发现,这道理可以用打马后炮别的方式来理解。
先放松一点条件,假如位运算只有一种,定位某一颗生成树,那么可以知道
\[w(T)=\oplus_{w\in W} w
\]
写成生成函数的形式,对于每条边就是
\[h((i,j))=[\exist e=(i,j,w)]x^w
\]
现在重边可以看做一条边了
那么可以知道
\[h(T)=\oplus h(w|w\in W)
\]
很显然,我们对\(h(x)\)做FWT,就得到了\(H(x)\)
\[H(T)=* H(w)
\]
其中\(*\)表示点积。
考虑这个FWT函数的每一位,它都是由点积而来的,也就是说第x位上H(T)数组的最终值和其他位置上的值无关。
那么我们对每条边做一个FWT后,每两个点之间有一个\(2^w\)次方大小的数组(w是题目里的w),对于每一个值都做一遍Matrix Tree,得到了一个值\(c_w\)。
根据Matrix Tree的原理,这就相当于\(O({m\choose n-1})\)地枚举边集,然后再将每条边的边权(一个生成函数做沃氏变换后变成的生成函数)相乘求和。显然就有了\(H=C\)。
还有一个问题是题目给定的鬼畜的运算,有个东西叫做扩展FWT,具体做法是对于每一位判断一下是哪个运算,然后直接按照对应的运算法则算就行。正确性可能显然?
于是这道题就完成了
//@winlere
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<assert.h>
#include<vector>
using namespace std; typedef long long ll;
inline int qr(){
int ret=0,f=0,c=getchar();
while(!isdigit(c))f|=c==45,c=getchar();
while(isdigit(c)) ret=ret*10+c-48,c=getchar();
return f?-ret:ret;
}
const int mod=998244353;
const int gi=(mod+1)/3;
const int g=3;
const int inv2=(mod+1)>>1;
const int maxn=13;
int n,m,ty[1<<maxn],w;
char C[maxn];
typedef vector<int> poly;
poly Mat[75][75],a[71];
inline int MOD(const int&x){return x>=mod?x-mod:x;}
inline int MOD(const int&x,const int&y){return 1ll*x*y%mod;}
inline int ksm(const int&ba,const int&p){
int ret=1;
for(int t=p,b=ba%mod;t;t>>=1,b=MOD(b,b))
if(t&1) ret=MOD(ret,b);
return ret;
}
inline int inv(int x){return ksm(x,mod-2);}
void FWT(poly&a,int op){
int len=a.size();
for(int t=1,c=0;t<len;t<<=1,++c)
for(int i=0;i<len;i+=t<<1)
for(int j=0;j<t;++j)
if(ty[c]==0) a[i+j+t]=MOD(a[i+j+t]+MOD(op,a[i+j]));
else if(ty[c]==1) a[i+j]=MOD(a[i+j]+MOD(op,a[i+j+t]));
else {
int t0=a[i+j],t1=a[i+j+t];
a[i+j]=MOD(t0+t1),a[i+j+t]=MOD(t0-t1+mod);
if(op!=1) a[i+j]=MOD(a[i+j],inv2),a[i+j+t]=MOD(a[i+j+t],inv2);
}
}
poly operator + (poly a,poly b){
a.resize(max(a.size(),b.size()));
for(int t=0,ed=b.size();t<ed;++t) a[t]=MOD(a[t]+b[t]);
return a;
}
poly operator *(int a,poly b){
for(auto&t:b) t=MOD(t,a);
return b;
}
void Gauss(){
int sav=1;
for(int t=1;t<n;++t){
for(int i=t+1;i<n&&!a[t][t];++i)
if(a[i][t]) sav=mod-sav,swap(a[t],a[i]);
if(!a[t][t]) return;
sav=MOD(sav,a[t][t]);
for(int k=1,v=inv(a[t][t]);k<n;++k)
a[t][k]=MOD(a[t][k],v);
for(int i=t+1;i<n;++i)
if(a[i][t])
for(int k=1,v=inv(a[i][t]);k<n;++k)
a[i][k]=MOD(a[i][k]-MOD(v,a[t][k])+mod);
}
a[1][1]=MOD(sav,a[1][1]);
}
int main(){
n=qr(); m=qr();
scanf("%s",C);
w=strlen(C);
for(int t=0;t<w;++t) ty[t]=C[t]=='&'?1:C[t]=='|'?2:3;
for(int t=1;t<=n;++t)
for(int i=1;i<=n;++i)
Mat[t][i].resize(1<<w);
for(int t=1,a,b,v;t<=m;++t){
a=qr(),b=qr(),v=qr();
Mat[a][b][v]=MOD(Mat[a][b][v]-1+mod);
Mat[b][a][v]=MOD(Mat[b][a][v]-1+mod);
Mat[a][a][v]=MOD(Mat[a][a][v]+1);
Mat[b][b][v]=MOD(Mat[b][b][v]+1);
}
for(int t=1;t<n;++t)
for(int i=1;i<n;++i)
FWT(Mat[t][i],1);
for(int t=1;t<n;++t) a[t].resize(n);
poly ret(1<<w);
for(int k=0;k<1<<w;++k){
for(int t=1;t<n;++t)
for(int i=1;i<n;++i)
a[t][i]=Mat[t][i][k];
Gauss(); ret[k]=1;
for(int t=1;t<n;++t) ret[k]=MOD(ret[k],a[t][t]);
}
FWT(ret,-1);
int ans=-1;
for(int t=0;t<1<<w;++t)
if(ret[t]) ans=t;
printf("%d\n",ans);
return 0;
}
博客保留所有权利,谢绝学步园、码迷等不在文首明显处显著标明转载来源的任何个人或组织进行转载!其他文明转载授权且欢迎!