【题解】HDU4689 Derangement(有技巧的计数DP)
【题解】HDU4689 Derangement(有技巧的计数DP)
呵呵没告诉我多测组数,然后\(n\le 20,7000\mathrm{ms}\)我写了个状压上去T了
题目大意:
要你求错排的方案数,但要求\(i\)位上的数比\(i\)大/小。大小关系用正负号告诉你,读入一个字符串。
\(O(n2^n)\)
设\(dp(s)\)表示已经放了\(|s|\)个数进去,放的数占满了\(s\)中的位置的方案数
转移太显然直接贴代码
//@winlere
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define DE(s) cerr<<(#s)<<"="<<(s)<<endl;
#define lowbit(x) ((x)&-(x))
using namespace std; typedef long long ll;
inline int qr(){
register int ret=0,f=0;
register char c=getchar();
while(!isdigit(c))f|=c==45,c=getchar();
while(isdigit(c)) ret=ret*10+c-48,c=getchar();
return f?-ret:ret;
}
const int maxn=20;
int n,U;
ll dp[1<<maxn];
char c[maxn];
int main(){
while(~scanf("%s",c)){
n=strlen(c);
dp[0]=1;
U=(1<<n)-1;
for(int t=1;t<=U;++t){
dp[t]=0;
int cnt=0;
for(int g=t;g;g-=lowbit(g)) ++cnt;
for(int i=0,g=t;i<n&&g;++i){
if(g>>i&1){
if(c[i]=='+'&&cnt>i+1) dp[t]+=dp[t^(1<<i)];
if(c[i]=='-'&&cnt<i+1) dp[t]+=dp[t^(1<<i)];
g^=1<<i;
}
}
}
printf("%lld\n",dp[U]);
}
return 0;
}
过不了 别想了
\(O(n^2)\)
考虑+号是一个后缀性的匹配,-号是一个前缀型的匹配。也就是说我们不可能直接把数给选好,要在后面再进行选择。这启发我可以设这样的状态:
\(dp(i,j)\)表示已经考虑前\(i\)个符号,但是需要从后面拉来\(j\)个\(>i\)数来凑齐前面的\(“+”\)。
当前是负号:
-
当前位置上的数拿来匹配前面的+
\[\]\[ \]\[\]\[ \] -
当前位置上的数拿来匹配前面一个+
\[\]\[ \]\[\]\[ \]
//@winlere
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define DE(s) cerr<<(#s)<<"="<<(s)<<endl
#define lowbit(x) ((x)&-(x))
using namespace std; typedef long long ll;
inline int qr(){
register int ret=0,f=0;
register char c=getchar();
while(!isdigit(c))f|=c==45,c=getchar();
while(isdigit(c)) ret=ret*10+c-48,c=getchar();
return f?-ret:ret;
}
const int maxn=25;
int n,U;
ll dp[maxn][maxn];
char c[maxn];
int main(){
while(~scanf("%s",c+1)){
n=strlen(c+1);
memset(dp,0,sizeof dp);
dp[0][0]=1;
int cnt_minus=0,cnt_plus=0;
for(int t=1;t<=n;++t){
if(c[t]=='-') {
for(int i=0;i<=cnt_plus;++i)
dp[t][i]=dp[t-1][i+1]*(t-1-(cnt_plus-(i+1))-cnt_minus)*(i+1ll)*(i+1<=cnt_plus)+dp[t-1][i]*(t-1-(cnt_plus-i)-cnt_minus);
++cnt_minus;
}
else {
for(int i=0;i<=cnt_plus+1;++i){
if(i) dp[t][i]+=dp[t-1][i-1];
dp[t][i]+=dp[t-1][i]*i;
}
++cnt_plus;
}
}
printf("%lld\n",dp[n][0]);
}
return 0;
}
博客保留所有权利,谢绝学步园、码迷等不在文首明显处显著标明转载来源的任何个人或组织进行转载!其他文明转载授权且欢迎!