【题解】NOIP2017 提高组 简要题解
【题解】NOIP2017 提高组 简要题解
小凯的疑惑(数论)
不讲
时间复杂度
大力模拟
奶酪
并查集模板题
宝藏
最优解一定存在一种构造方法是按照深度一步步生成所有的联通性。
枚举一个根,随后设\(dp(i,j)\)表示最大深度为\(i\)且当前联通的集合是\(j\)的最小答案。预处理\(dis(u,j)\)表示当\(j\)集合内的点都存在时,\(u\)到这些点的最短的最短边。
转移:
\[dp(i,j)=\min \{dp(i-1,j),dp(i-1,s)+(i-1)\times \sum_{u\in j-s} dis(u,s)\}
\]
你会问这样不能保证连边的时候深度为\(i-1\)啊,可能更小啊?
但是这样不会影响最优解。
//@winlere
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
using namespace std; typedef long long ll;
inline int qr(){
register int ret=0,f=0;
register char c=getchar();
while(!isdigit(c))f|=c==45,c=getchar();
while(isdigit(c)) ret=ret*10+c-48,c=getchar();
return f?-ret:ret;
}
const int maxn=13;
const int inf=0x3f3f3f3f;
int e[maxn][maxn];
int dp[maxn][1<<maxn];
int dis[maxn][1<<maxn];
int n,m,rt;
int cnt=0;
int main(){
memset(e,0x3f,sizeof e);
memset(dp,0x3f,sizeof dp);
n=qr(); m=qr();
for(int t=1,t1,t2;t<=m;++t)
t1=qr(),t2=qr(),e[t1][t2]=e[t2][t1]=min(e[t1][t2],qr());
const int K=(1<<n)-1;
for(int t=0;t<=K;++t)
for(int g=1;g<=n;++g){
if(t<<1>>g&1) continue;
int f=inf;
for(int k=1;k<=n;++k)
if(t<<1>>k&1) f=min(f,e[g][k]);
dis[g][t]=f;
}
int ans=inf;
for(int rt=1;rt<=n;++rt){
memset(dp,0x3f,sizeof dp);
dp[1][1<<rt>>1]=0;
for(int t=2;t<=n;++t){
for(int i=1;i<=K;++i){
dp[t][i]=dp[t-1][i];
for(int l=i;l;--l&=i){
int c=l^i,ret=0;
if(dp[t-1][c]>=dp[t][i])continue;
bool f=0;
for(int g=1;g<=n;++g)
if(l<<1>>g&1){
if(dis[g][c]>=inf){ret=inf; break;}
else ret+=dis[g][c];
if(dp[t-1][c]+(t-1)*ret>=dp[t][i]) {f=1;break;}
}
if(f)continue;
dp[t][i]=min((ll)dp[t][i],dp[t-1][c]+(t-1ll)*ret);
}
}
ans=min(ans,dp[t][K]);
}
ans=min(ans,dp[1][K]);
}
printf("%d\n",ans);
return 0;
}
列队
不会
好像会线段树动态开点做法,没写
写了
//@winlere
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#define mid ((l+r)>>1)
using namespace std; typedef long long ll;
const int maxn=3e5+5,maxm=6e6+5;
int n,m,q,rt[maxn],ls[maxm],rs[maxm],seg[maxm],cnt;
ll id[maxn<<1];
vector<ll> e[maxn];
int que(const int&k,const int&l,const int&r,int&pos){
if(!pos)pos=++cnt,seg[pos]=r-l+1;
--seg[pos];
if(l==r)return l;
int g=ls[pos]?seg[ls[pos]]:mid-l+1;
return g>=k?que(k,l,mid,ls[pos]):que(k-g,mid+1,r,rs[pos]);
}
int main(){
ios::sync_with_stdio(0); cin.tie(0); cout.tie(0);
cin>>n>>m>>q;
for(int t=1;t<=n;++t) id[t]=1ll*t*m;
for(int t=n+1,N=n+q,M=m+q,x,y,ans;q--;cout<<id[t++]<<'\n'){
cin>>x>>y;
if(y==m) id[t]=id[ans=que(x,1,N,rt[0])];
else id[t]=(ans=que(y,1,M,rt[x]))<m?(x-1ll)*m+ans:e[x][ans-m], e[x].push_back(id[que(x,1,N,rt[0])]);
}
return 0;
}
博客保留所有权利,谢绝学步园、码迷等不在文首明显处显著标明转载来源的任何个人或组织进行转载!其他文明转载授权且欢迎!