【题解】P4137 Rmq Problem(莫队)
【题解】P4137 Rmq Problem(莫队)
其实这道题根本就不用离散化!
因为显然有\(mex\)值是\(\le 2\times 10^5\)的,所以对于大于\(2\times 10^5\)的数我们可以忽略。
然后直接莫队算就是的,开一个\(2e5\)的桶
- 若一个比答案小的值的桶为\(0\)了:答案更新为它
- 若这个\(mex\)的桶突然有值了:暴力枚举答案变大,第一个桶里没值的就是答案,更新。
有小伙伴会问,这复杂度不上天了?其实不然。移动\(ans\)的总复杂度(好像)是\(O(n\sqrt n)\)的,因为:
-
当区间长度增大时,\(ans\)的移动是均摊\(O(\text{区间长度})\)的(最坏情况(好像)是加进来的数就变成了一个递增序列)。
-
当区间减小时,\(ans\)是直接更新的。所以\(ans\)指针的移动和\(L,R\)指针的移动次数是同级的。
由于莫队中,区间减小增大不是交替的(不存在\(L\)动一次交替然后\(R\)动一次)(都是一个动完再动另外一个),所以最终复杂度\(O(n\sqrt n)\),实际上(貌似)吊打\(O(n \log n)\)
//@winlere
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std; typedef long long ll;
inline int qr(){
register int ret=0,f=0;
register char c=getchar();
while(c<48||c>57)f|=c==45,c=getchar();
while(c>=48&&c<=57) ret=ret*10+c-48,c=getchar();
return f?-ret:ret;
}
const int maxn=2e5+5;
int be[maxn];
int data[maxn];
int s[maxn];
int n,N,ans,m;
struct Q{
int l,r,id;
Q(){l=r=id=0;}
Q(const int&a,const int&b,const int&c){l=a;r=b;id=c;}
inline bool operator <(const Q&a)const{return be[l]==be[a.l]?(be[l]&1?r<a.r:r>a.r):(l<a.l);}
}q[maxn];
inline void add(const int&pos,const int&tag){
if(data[pos]>maxn) return;
s[data[pos]]+=tag;
const int k=s[data[pos]];
if(k==0&&ans> data[pos]) ans=data[pos];
if(k==1&&ans==data[pos])
while(++ans) if(!s[ans]) return;
}
int main(){
n=qr(),m=qr();
N=sqrt(n)+1;
for(register int t=1;t<=n;++t) be[t]=(t-1)/N+1;
for(register int t=1;t<=n;++t) data[t]=qr();
for(register int t=1,t1,t2;t<=m;++t) t1=qr(),t2=qr(),q[t]=Q(t1,t2,t);
sort(q+1,q+m+1);
register int L=1,R=0;
for(register int t=1;t<=m;++t){
while(L<q[t].l) add(L++,-1);
while(L>q[t].l) add(--L, 1);
while(R<q[t].r) add(++R, 1);
while(R>q[t].r) add(R--,-1);
be[q[t].id]=ans;
}
for(register int t=1;t<=m;++t) printf("%d\n",be[t]);
return 0;
}
博客保留所有权利,谢绝学步园、码迷等不在文首明显处显著标明转载来源的任何个人或组织进行转载!其他文明转载授权且欢迎!