【题解】284E. Coin Troubles(dp+图论建模)
【题解】284E. Coin Troubles(dp+图论建模)
题意就是要你跑一个完全背包,但是要求背包的方案中有个数相对大小的限制
考虑一个\(c_i<c_j\)的限制,就是一个\(c_i\)一定可以对应一个\(c_j\),一个常见的钦定手法是,直接把\(c_j\)的权值捆绑在\(c_i\)上,实现选一个\(c_i\)必选一个\(c_j\)。但是题目里是大于号怎么办,那就直接在背包中钦定先拿一个\(c_j\)即可。
现在问题就是维护这一个捆绑的关系,我们可以直接根据差分约束的那种方法建模出来,然后判断整个图有没有环来判断是否无解。由于题目里保证一些很优美的性质(一个点的出入度各\(\le1\))所以不需要真的拓扑排序。直接每个点记录一下比自己小的点,从每个点跑\(dfs\)就好了,然后假如跑\(dfs\)的时候发现出现了环,直接exit即可。
考虑一下\(<\)的传递性,比如样例1里面的这种情况\(c_3>c_4>c_2\),我们要求钦定两个\(3\),一个\(4\),直接通过\(dfs\)记录一下就好。
很坑的地方就是可能爆int之类的,所以要判断一下....由于我很懒所以我直接瞎几把判断的
//@winlere
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std; typedef long long ll;
inline int qr(){
register int ret=0,f=0;
register char c=getchar();
while(c<48||c>57)f|=c==45,c=getchar();
while(c>=48&&c<=57) ret=ret*10+c-48,c=getchar();
return f?-ret:ret;
}
const int maxn=1e5+5;
const int mod=1e9+7;
int dp[maxn];
int data[301];
int sav[301];
int le[301];
int n,m,k,init;
int in[301];
int dfs2(const int&now,const int&d){
in[now]=1;
register int ret=0;
init+=1ll*sav[now]*d;
if(init<0||init>k) puts("0"),exit(0);
if(in[le[now]]) puts("0"),exit(0);
if(le[now]) ret=dfs2(le[now],1);
in[now]=0;
return ret+sav[now];
}
int main(){
n=qr(); m=qr(); k=qr();
for(register int t=1;t<=n;++t) sav[t]=data[t]=qr();
for(register int t=1,t1,t2;t<=m;++t){
t1=qr(); t2=qr();
le[t2]=t1;
}
for(register int t=1;t<=n;++t) if(le[t]) data[t]=dfs2(t,0);//,putchar('\n');
for(register int t=1;t<=n;++t) if(data[t]<0) puts("0"),exit(0);
if(init<maxn) dp[init]=1;
for(register int t0=1;t0<=n;++t0)
for(register int t=init+data[t0];t<=k;++t)
dp[t]=(dp[t]+dp[t-data[t0]])%mod;
printf("%d\n",dp[k]);
return 0;
}
博客保留所有权利,谢绝学步园、码迷等不在文首明显处显著标明转载来源的任何个人或组织进行转载!其他文明转载授权且欢迎!