【题解】Killer Names($O(n\log n)$做法)
【题解】Killer Names(\(O(n\log n)\)做法)
感觉好久没做过这种直来直去的组合题,过来水一篇题解。还以为要写一个\(MTT\)或者三模数\(NTT\),想了想HDU这种老年机子还是算了,最后发现\(O(n^2)\)就行了
题意翻译过后就是要求一个式子:
\[\sum_{i+j\le m}{m\choose i}{m-i\choose j}{n\brace i}{n\brace j}i!j!
\]
钦定两边分别出现\(i,j({m\choose i}{m-i\choose j})\)种不同的颜色,然后再随意分布\(({n\brace i}{n\brace j}i!j!)\)
感觉这很可以卷积一下,但是我们这里是小于号咋办
假设大家都会母函数和NTT和卷积,
设
\[g_i=\sum_{i+j= m}{m\choose i}{m-i\choose j}{n\brace i}{n\brace j}i!j!
\\
G(x)=\sum_{i=0}^mg_ix^i
\]
那么这个式子可以化成
\[G(x){(1+x+x^2+x^3\dots)}=G(x){1\over 1-x}
\]
就构造了一个小于号出来。好我们来拆这个式子
拆出来后是这样的
\[\sum_{i+j\le m}{m!\over (m-i-j)!}{n\brace i}{n\brace j}
\]
你以为不能拆?但是!!!!!!别忘了\(g_i\)是等于号啊,所以\(i+j=m\),所以\((m-i-j)!=1\),因此继续化简,这样我们就可以卷积了。
\[\dfrac {g_i} {m!}=\sum_{i+j=m}{n\choose i}{n\choose j}
\]
我们不需要多项式球逆,只需要\(O(n)\)构造\(1\over 1-x\)就行,NTT求一行斯特林数也是\(O(n\log n)\)所以复杂度\(O(n\log n)\)
而且还可以加强一下,比如两边名字长度不同之类的...必须用至少\(k\)个不同的字母之类的...
但是这里模数居然不是清真的\(998244353\),所以你得写三模数NTT再CRT合并!!那对不起我赶时间还是写\(O(n^2)\)算这个式子...
//@winlere
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std; typedef long long ll;
inline int qr(){
register int ret=0,f=0;
register char c=getchar();
while(c<48||c>57)f|=c==45,c=getchar();
while(c>=48&&c<=57) ret=ret*10+c-48,c=getchar();
return f?-ret:ret;
}
const int maxn=2e3+1;
const int mod=1e9+7;
int s[maxn][maxn];
int jc[maxn],inv[maxn];
inline int ksm(const int&ba,const int&p){
register int ret=1;
for(register int t=p,b=ba%mod;t;t>>=1,b=1ll*b*b%mod) if(t&1) ret=1ll*ret*b%mod;
return ret;
}
inline void pre(const int&n){
s[0][0]=1;
for(register int t=1;t<=n;++t)
for(register int i=1;i<=n;++i)
s[t][i]=(1ll*s[t-1][i]*i%mod+s[t-1][i-1])%mod;
inv[0]=jc[0]=1;
for(register int t=1;t<=n;++t) jc[t]=1ll*jc[t-1]*t%mod;
inv[n]=ksm(jc[n],mod-2);
for(register int t=n-1;t;--t) inv[t]=1ll*inv[t+1]*(t+1)%mod;
}
inline int c(const int&n,const int&m){
if(n<m) return 0;
return 1ll*jc[n]*inv[m]%mod*inv[n-m]%mod;
}
int n,m;
int main(){
pre(2e3);
int T=qr();
while(T--){
n=qr(); m=qr(); int ans=0,ed=min(n,m); int*S=s[n];
for(register int t=1;t<=ed;++t)
for(register int i=1;t+i<=m&&i<=n;++i)
ans=(ans+1ll*c(m,t)*c(m-t,i)%mod*S[t]%mod*S[i]%mod*jc[t]%mod*jc[i]%mod)%mod;
printf("%d\n",ans);
}
return 0;
}
博客保留所有权利,谢绝学步园、码迷等不在文首明显处显著标明转载来源的任何个人或组织进行转载!其他文明转载授权且欢迎!