【题解】CF1056F Write the Contest(三分+贪心+DP)
【题解】CF1056F Write the Contest(三分+贪心+DP)
最优化问题的三个解决方法都套在一个题里了,真牛逼
最优解应该是怎样的,一定存在一种最优解是先完成了耗时长的任务再干别的(不干白不干啊),所以我们按照耗时先排序。
假设你最优解是去事件\(e_1,e_2,e_3,e_4\),你可以在规定时间里干完,那么你如果按照耗时从大往小干也一定可以干完。
好像只能找到"按照耗时从大往小干"一种钦定方法使得所有方案可以归纳到这种情况
考虑最终耗时是怎样的:\(t\)表示练习用的时间
\[f(t)=\dfrac {\sum(\dfrac {10} 9)^i a_{h_i}} {s_0+Ct}+10t
\]
我们转化一下思路,设\(dp(i,j)\)表示选择\(i\)个任务做并且将会获得收益\(j\)的的最小的\(\sum(\dfrac {10} 9)^i a_{h_i}\),这样的设置状态类似于那个Jury一题,【题解】Jury Compromise(链表+DP)。转移显然不讲了。
现在我们要使得\(f(t)=\dfrac {dp(i,j)} {s_0+Ct}+10t\)满足条件并且使得\(j\)最大,由于\(i,j\le O(n)\)所以直接\(n^2\)枚举即可,现在的问题就变成了最小化这个东西\(f(t)\),显然这个函数有单峰且最小(类双勾函数),所以直接三分即可。
//@winlere
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std; typedef long long ll;
inline int qr(){
register int ret=0,f=0;
register char c=getchar();
while(c<48||c>57)f|=c==45,c=getchar();
while(c>=48&&c<=57) ret=ret*10+c-48,c=getchar();
return f?-ret:ret;
}
const int maxn=1001;
long double dp[maxn][maxn];
const long double delta=(long double)9/10;
const long double eps=1e-5;
typedef pair < int , int > P;
P data[maxn];
// a c
#define f(x) (( (x)+dp[t][k]/(1+C*(x)) ))
long double mi[maxn];
int main(){
//freopen("gamemag.in","r",stdin);
//freopen("gamemag.out","w",stdout);
mi[0]=1;
for(register int t=1;t<maxn;++t) mi[t]=mi[t-1]/delta;
for(register int T00=qr();T00;--T00){
int n;
long double C,T;
cin>>n>>C>>T;
for(register int t=1;t<=n;++t)
data[t].first=qr(),data[t].second=qr();
sort(data+1,data+(int)n+1,[](const P&a,const P&b){return a>b;});
for(register int t=0;t<maxn;++t)
for(register int i=0;i<maxn;++i)
dp[t][i]=1e18;
dp[0][0]=0;
for(register int t=1;t<=n;++t){
for(register int i=t;i;--i){
for(register int k=data[t].second;k<=i*10;++k){
dp[i][k]=min(dp[i][k],dp[i-1][k-data[t].second]+data[t].first*mi[i]);
}
}
}
int ans=0;
for(register int t=1;t<=n;++t){
for(register int k=ans+1;k<=10*t;++k){
//cout<<dp[t][k]<<endl;
long double l=0,r=T,ll,rr;
do{
ll=l+(r-l)/3;
rr=r-(r-l)/3;
if(f(ll)<f(rr)) r=rr;
else l=ll;
}while(l+eps<r);
if(f(l)+10ll*t<T) ans=max(ans,k);
}
}
cout<<ans<<endl;
}
return 0;
}
博客保留所有权利,谢绝学步园、码迷等不在文首明显处显著标明转载来源的任何个人或组织进行转载!其他文明转载授权且欢迎!