【题解】P4091 [HEOI2016/TJOI2016]求和
【题解】P4091 [HEOI2016/TJOI2016]求和
[P4091 HEOI2016/TJOI2016]求和
可以知道\(i,j\)从\(0\)开始是可以的,因为这个时候等于\(0\)。这种题目都要从\(0\)开始或许比较好(Itst语)
然后就开始化式子吧
原式=
\[\sum_{i=0}^{n} \sum_{j=0}^n {i \brace j}2^j j!
\]
斯特林容斥式子展开一下,并且我们知道当\(k>j\)时,\({j \choose k}=0\),所以扩大枚举范围到\(n\)
\[\sum_{i=0}^n\sum_{j=0}^n j!\sum_{k=0}^n \dfrac 1 {j!}(-1)^k{j \choose k}(j-k)^i
\]
只有一项和\(i\)有关,约掉一些东西
\[\sum_{j=0}^n\sum_{k=0}^j (-1)^k{j \choose k}\sum_{i=0}^n(j-k)^i
\]
等比求和(边界情况到时候再考虑)
\[\sum_{j=0}^n \sum_{k=0}^j (-1)^k{j \choose k}\dfrac {1-(j-k)^{n+1}} {1-(j-k)}
\]
拆掉组合数
\[\sum_{j=0}^n j! \sum_{k=0}^j \dfrac{(-1)^k} {k!}\dfrac {1-(j-k)^{n+1}} {1-(j-k)}
\]
就是一个\(NTT\)的式子,\(NTT\)处理就好了。
这题关键就是想到那个...算了没什么关键的,无非就是记得几个公式。
其实关键的就是记得把枚举下标最好扩展到一起,来消除变量之间的相互联系,并且方便预处理。
考虑一些边界:
\(j-k=0\)的时候,此时\(j=k\),代回到最开始发现要\(=1\),或者说一般组合题里面认为\(0^0=1\)
\(j-k=1\)的时候,这个时候简单一点,就是等比数列不能用公式的情况,直接\(=n+1\)即可。
//@winlere
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std; typedef long long ll;
inline int qr(){
register int ret=0,f=0;
register char c=getchar();
while(c<48||c>57)f|=c==45,c=getchar();
while(c>=48&&c<=57) ret=ret*10+c-48,c=getchar();
return f?-ret:ret;
}
namespace poly{
const int maxn=1<<21|1;
int r[maxn];
int savlen;
inline void getr(const int&len){
if(len==savlen) return;
int cnt=0;
for(register int t=1;t<len;t<<=1)++cnt;
for(register int t=1;t<len;++t)
r[t]=r[t>>1]>>1|(t&1)<<cnt>>1;
}
const int mod=998244353;
const int g=3;
const int gi=332748118;
inline int ksm(const int&base,const int&p){
register int ret=1;
for(register int t=p,b=base%mod;t;t>>=1,b=1ll*b*b%mod)
if(t&1) ret=1ll*ret*b%mod;
return ret;
}
inline void NTT(int*a,const int&len,const int&tag){
getr(len);
for(register int t=1;t<len;++t)
if(r[t]>t) swap(a[t],a[r[t]]);
int *a0,*a1,s=g;
if(tag!=1) s=gi;
for(register int t=1,wn;t<len;t<<=1){
wn=ksm(s,(mod-1)/(t<<1));
for(register int i=0;i<len;i+=t<<1){
a1=(a0=a+i)+t;
for(register int k=0,m,w=1;k<t;++k,++a1,++a0,w=1ll*w*wn%mod){
m=1ll*w**a1%mod;
*a1=(*a0+mod-m)%mod;
*a0=(*a0+m)%mod;
}
}
}
if(tag!=1)
for(register int t=0,w=ksm(len,mod-2);t<len;++t)
a[t]=1ll*a[t]*w%mod;
}
}
using namespace poly;
int jc[100005],inv[100005],bin[100005],n;
inline void pre(){
bin[0]=jc[0]=inv[0]=1;
for(register int t=1;t<=100000;++t)
jc[t]=1ll*jc[t-1]*t%mod;
inv[100000]=ksm(jc[100000],mod-2);
for(register int t=100000-1;t;--t)
inv[t]=1ll*(t+1)*inv[t+1]%mod;
for(register int t=1;t<=100000;++t)
bin[t]=(bin[t-1]<<1)%mod;
}
int a[maxn],b[maxn];
int main(){
#ifndef ONLINE_JUDGE
freopen("in.in","r",stdin);
#endif
pre();
n=qr();
for(register int t=0;t<=n;++t){
a[t]=inv[t];
if(t&1) a[t]=mod-a[t];
b[t]=1ll*(ksm(t,n+1)-1ll+mod)%mod*ksm(t-1,mod-2)%mod*inv[t]%mod;
}
b[0]=1;b[1]=n+1;
int k=1;
while(k<=n)k<<=1;
NTT(a,k<<1,1);NTT(b,k<<1,1);
for(register int t=0;t<k<<1;++t) a[t]=1ll*a[t]*b[t]%mod;
NTT(a,k<<1,-1);
int ans=0;
for(register int t=0;t<=n;++t)
ans=(ans+1ll*bin[t]*jc[t]%mod*a[t]%mod)%mod;
cout<<ans<<endl;
return 0;
}
博客保留所有权利,谢绝学步园、码迷等不在文首明显处显著标明转载来源的任何个人或组织进行转载!其他文明转载授权且欢迎!