【题解】BZOJ5093图的价值(二项式+NTT)
【题解】BZOJ5093图的价值(二项式+NTT)
今天才做这道题,是我太弱了
强烈吐槽c++这种垃圾语言tmd数组越界不re反倒去别的数组里搞事情我只想说QAQ
推了一张A4纸的式子
考虑每个点的度数,因为每个点虽然有标号但是是等价的,对于每个点,对于答案的贡献是\(x\),答案输出\(n\times x\)就好了,所以答案是
\[n\sum_{i=1}^{n-1} i^{k} {n-1\choose i}2^{\frac {n(n-1)} 2-(n-1)}
\]
顺次解释:度数\(^k\),选择\(i\)个别的点去连接,剩下的边随便连
无关项提出来
\[n2^{\frac {n(n-1)} 2-(n-1)}\sum_{i=1}^{n-1} i^{k} {n-1\choose i}
\]
现在就是要求
\[\sum_{i=1}^{n-1} i^{k} {n-1\choose i}
\]
自然幂数和公式
\[i^k=\sum_{j=0}^{\min\{i,k\}} {k\brace j}\begin{pmatrix} i \\j\end{pmatrix}j!
\]
套进去
\[\sum_{i=1}^{n-1} \sum_{j=0}^{\min\{i,k\}} {k\brace j}\begin{pmatrix} i \\j\end{pmatrix}j! {n-1\choose i}
\]
先枚举\(j\)
\[\sum_{j=0}^{n-1}\sum_{i=j}^{n-1}{k\brace j}j!{n-1\choose i}{i\choose j}
\]
整理
\[\sum_{j=0}^{n-1}{k\brace j}j!\sum_{i=j}^{n-1}{n-1\choose i}{i\choose j}
\]
套一下公式(备胎模型)
\[\sum_{j=0}^{n-1}{k\brace j}j!\sum_{i=j}^{n-1}{n-1-j\choose j}{n-1-j\choose i-j}
\]
又可以提出来
\[\sum_{j=0}^{n-1}{k\brace j}{n-1-j\choose j}j!\sum_{i=j}^{n-1}{n-1-j\choose i-j}
\]
稍微改变一下形式
\[\sum_{j=0}^{n-1}{k\brace j}{n-1-j\choose j}j!\sum_{c=i-j=0}^{c=i-j\le n-1-j}{n-1-j\choose c}
\]
二项式定理套
\[\sum_{j=0}^{n-1}{k\brace j}{n-1-j\choose j}j!2^{n-1-j}
\]
我们晓得当\(k > j\)时式子的值\(=0\),所以枚举到\(\min \{n-1,k\}\)就好了。问题在于如何快速求那个斯特林数
斯特林数的容斥式
\[{k\brace j}=\dfrac 1{j!} \sum_{i=0}^{j-1} (-1)^i{\begin{pmatrix}j\\i\end{pmatrix}}(j-i)^{k}
\]
拆拆又是一个NTT的式子,不赘述了,看上面那个链接博客里有
答案式子
\[n2^{\frac {n(n-1)} 2-(n-1)}\sum_{j=0}^{n-1}{k\brace j}{n-1-j\choose j}j!2^{n-1-j}
\]
指数上取膜,又是欧拉定理
写一下NTT就好了
//@winlere
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std; typedef long long ll;
inline int qr(){
register int ret=0,f=0;
register char c=getchar();
while(c<48||c>57)f|=c==45,c=getchar();
while(c>=48&&c<=57) ret=ret*10+c-48,c=getchar();
return f?-ret:ret;
}
namespace poly{
const int maxn=1<<19|1;
int a[maxn],b[maxn],r[maxn];
int savlen;
inline void getr(const int&len){
if(len==savlen)return;
int cnt=0;
for(register int t=1;t<len;t<<=1)++cnt;
for(register int t=1;t<len;++t)
r[t]=r[t>>1]>>1|(t&1)<<cnt>>1;
}
const int mod=998244353;
const int g=3;
inline int ksm(int base,int p){
register int ret=1;
for(base%=mod;p;p>>=1,base=1ll*base*base%mod)
if(p&1) ret=1ll*ret*base%mod;
return ret;
}
const int gi=ksm(3,mod-2);
inline void NTT(int*a,const int&len,const int&tag){
getr(len);
for(register int t=1;t<len;++t)
if(r[t]>t) swap(a[t],a[r[t]]);
int *a1,*a0,s=g;
if(tag!=1) s=gi;
for(register int t=1,wn;t<len;t<<=1){
wn=ksm(s,(mod-1)/(t<<1));
for(register int i=0;i<len;i+=t<<1){
a1=(a0=a+i)+t;
for(register int j=0,w=1,tm;j<t;++j,++a1,++a0,w=1ll*w*wn%mod){
tm=1ll**a1*w%mod;
*a1=(*a0-tm)%mod;
*a0=(*a0+tm)%mod;
if(*a1<0)*a1+=mod;
}
}
}
if(tag!=1)
for(register int t=0,in=ksm(len,mod-2);t<len;++t)
a[t]=1ll*a[t]*in%mod;
}
}
using poly::mod;
using poly::NTT;
using poly::ksm;
const int maxn=2e5+5;
int jc[maxn],inv[maxn];
int t1[1<<19|1];
int s[1<<19|1];
int n,k,L,len;
int ret,ans;
inline void pre(){
jc[0]=inv[0]=1;
for(register int t=1;t<maxn;++t)
jc[t]=1ll*jc[t-1]*t%mod;
inv[maxn-1]=ksm(jc[maxn-1],mod-2);
for(register int t=maxn-2;t;--t){
inv[t]=1ll*inv[t+1]*(t+1)%mod;
//if(t<15)cout<<"qaq="<<inv[t]<<endl;
if(inv[t]==0) return void(cout<<"t="<<t<<endl);
}
}
inline int c(const int&n,const int&m){
if(n<m)return 0;
return 1ll*jc[n]*inv[m]%mod*inv[n-m]%mod;
}
int main(){
pre();
n=qr();k=qr();
L=min(n-1,k);
len=1;
while(len<=L)len<<=1;
for(register int t=0;t<=L;++t){
s[t]=inv[t];
if(t&1) s[t]=mod-s[t];
t1[t]=1ll*inv[t]*ksm(t,k)%mod;
}
NTT(t1,len<<1,1);NTT(s,len<<1,1);
for(register int t=0;t<len<<1;++t) s[t]=1ll*s[t]*t1[t]%mod;
NTT(s,len<<1,-1);
for(register int t=k+1;t<len<<1;++t) s[t]=0;
int p=(1ll*n*(n-1ll)/2%(mod-1)-n+1+mod-1)%(mod-1);
ret=1ll*ksm(2,p)*(n%mod)%mod;
int w=1;
for(register int t=0;t<=L;++t){
ans=(ans+1ll*jc[t]*w%mod*ksm(2,n-1-t)%mod*s[t]%mod)%mod;
w=1ll*w*(n-1-t)%mod*inv[t+1]%mod*jc[t]%mod;
}
cout<<1ll*ret*ans%mod<<endl;
return 0;
}
博客保留所有权利,谢绝学步园、码迷等不在文首明显处显著标明转载来源的任何个人或组织进行转载!其他文明转载授权且欢迎!