【题解】Making The Grade(DP+结论)

【题解】Making The Grade(DP+结论)

VJ:Making the Grade

HNOI-D2-T3 原题,禁赛三年。

或许是我做过的最简单的DP题了吧(一遍过是什么东西)

之前做过关于绝对值的题目,这种要求绝对值最小的题目,有一个很普遍的结论,最优解的集合中,一定有一个满足所有元素一定是所给定的元素中的元素,具体证明或许就是把括号拆开或者反证法吧。

然后就是这种看起来是\(O(n^3)\)的DP可以通过巧妙的实现降到\(O(n^2)\),当然你暴力使用数据结构变成\(O(n^2\log n)\)也随便你(但是我暂时不会,因为还没有仔细思考,但求高手解答)。

考虑后面选择的内容和前面选择的内容是最优子结构,所以考虑DP

直接问什么求什么\(dp(i,j)\)表示对于第\(i\)个数字,我们拿\(j\)(数值)进行匹配,这样我们转移就太简单了

\[dp(i,j)=min\{dp(i-1,x|x<j)+|A_i-j|\} \]

初始化什么的没有难度就不说了,然而值域很大,但是值域不影响转移,我们只关心大小,到时候统计答案的时候再还原就好了。

//@winlere
#include<iostream>
#include<cstring>
#include<cmath>
#include<cstdio>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef unsigned int uint;
inline int qr(){
      register int ret=0,f=0;
      register char c=getchar();
      while(c<48||c>57) f|=c==45,c=getchar();
      while(c>=48&&c<=57) ret=ret*10+c-48,c=getchar();
      return f?-ret:ret;
}
const int maxn=2e3+5;
int n;
uint A[maxn];
uint sav[maxn];
int cnt;
ll dp[maxn][maxn];
inline ll retans(const ll&a,const ll&b){
      ll t1=a-b;
      if(t1<0)return -t1;
      return t1;
}

int main(){
#ifndef ONLINE_JUDGE
      freopen("in.in","r",stdin);
      freopen("out.out","w",stdout);
#endif
      n=qr();
      memset(dp,0x3f,sizeof dp);
      for(register int t=1;t<=n;++t)
	    sav[t]=A[t]=qr();
      sort(sav+1,sav+n+1);
      cnt=unique(sav+1,sav+n+1)-sav-1;
      for(register int t=1;t<=n;++t)
	    A[t]=lower_bound(sav+1,sav+cnt+1,A[t])-sav;
      memset(dp[0],0,sizeof dp[0]);
      for(register int t=1;t<=n;++t){
	    int mini=0;
	    for(register int i=1;i<=cnt;++i){
		  if(!mini || dp[t-1][mini]>dp[t-1][i]) mini=i;
		  dp[t][i]=min(dp[t][i],dp[t-1][mini]+retans(sav[A[t]],sav[i]));
		  //cout<<t<<' '<<i<<' '<<dp[t][i]<<' '<<mini<<endl;
	    }
      }
      ll ans=0xffffffffff;
      for(register int t=1;t<=cnt;++t)
	    ans=min(ans,dp[n][t]);
      cout<<ans<<endl;
      return 0;
}

posted @ 2019-05-14 22:02  谁是鸽王  阅读(1544)  评论(0编辑  收藏  举报