Card Collector(期望+min-max容斥)
Card Collector(期望+min-max容斥)
woc居然在毫不知情的情况下写出一个min-max容斥
题意
买一包方便面有几率附赠一张卡,有\(n\)种卡,每种卡出现的概率是\(p_i\),保证\(\Sigma p_i \le 1\),集齐所有种类卡牌期望买多少包方便面?
解法
看次题解前,你必须要理解当只有一种卡,他出现的概率是\(p\),那么我期望购买$\frac 1 p $包方便面就可以获得这种卡。
否则请你右上角,因为博主不会解释...
唯一的解释就是:
(期望购买包数)\(\times\)(每包里面出现一张的概率)=(张数)
所以把概率除过去就好了...
我们想把所有\(\frac 1 p\)加起来,发现这样的错误的,原因是我们忽略了每次抽卡牌的时候可能抽到别的卡牌,把所有$\frac 1 p $加起来相当于必须抽到一张卡牌后才能抽到另一张,这样是不对的。
但是这样启示我们可以容斥,根据一些显然的概率原理(如果你不承认就右上角),出现\(1\)或者\(2\)号卡牌的概率是\(p_1+p_2\)。那么,\(\frac 1 {p_1+p_2}\)的意思是,我抽到一张\(1\)或者\(2\)的期望次数。那么,抽到一张\(1\)和一张\(2\)的期望次数就是
\[1/p_1+1/p_2-1/(p_1+p_2)
\]
为什么我们的期望里要减去\(1/(p_1+p_2)\),因为我抽\(1\)的时候可能抽出\(2\),会省下一点期望,这个期望具体的值就是\(1/(p_1+p_2)\)(看不懂就右上角)。
所以我们就可以愉快地容斥了
\[E(A)=\sum_{t \subseteq U}(-1)^{|t|}(\frac 1 {\sum _{p \in t}p})
\]
实际上,这个式子就是\(min-max\)容斥。
//@winlere
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
const int maxn=25;
int num[maxn],n;
long double ans;
long double p[maxn];
int main(){
#ifndef ONLINE_JUDGE
freopen("in.in","r",stdin);
freopen("out.out","w",stdout);
#endif
num[1]=1;
for(register int t=2;t<maxn;++t)
num[t]=num[t-1]<<1;
while(~scanf("%ds",&n)){
for(register int t=1;t<=n;++t)
scanf("%Lf",&p[t]);
for(register int t=1,edd=1<<n;t<edd;++t){
long double delt=0;
register int cnt=0;
for(register int i=1;i<=n;++i)
if(t&num[i]){
delt+=p[i];
++cnt;
}
if(cnt&1) ans+=1.0/delt;
else ans-=1.0/delt;
}
printf("%.4Lf\n",ans);
ans=0;
}
return 0;
}
博客保留所有权利,谢绝学步园、码迷等不在文首明显处显著标明转载来源的任何个人或组织进行转载!其他文明转载授权且欢迎!