【题解】CF45G Prime Problem
【题解】CF45G Prime Problem
哥德巴赫板子题?
\(\frac{n(n+1)}{2}\)若是质数,则不需要分了。
上式 若是奇数,那么拆成2和另一个数。
上式 若是偶数吗,直接\(O(n)\)枚举。
加上暴力判质数,复杂度\(O(n\sqrt{n})\)
没写,蒯别人的吧
//老写不对 交个题解看题解对不对
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<queue>
#include<bitset>
#include<vector>
#include<map>
#include<ctime>
#include<cstdlib>
#include<set>
#include<bitset>
#include<stack>
#include<list>
#include<cmath>
using namespace std;
#define RP(t,a,b) for(register int (t)=(a),edd_=(b);t<=edd_;++t)
#define DRP(t,a,b) for(register int (t)=(a),edd_=(b);t>=edd_;--t)
#define ERP(t,a) for(int t=head[a];t;t=e[t].nx)
#define Max(a,b) ((a)<(b)?(b):(a))
#define Min(a,b) ((a)<(b)?(a):(b))
#define TMP template<class ccf>
#define lef L,R,l,mid,pos<<1
#define rgt L,R,mid+1,r,pos<<1|1
#define midd register int mid=(l+r)>>1
#define chek if(R<l||r<L)return
#define all 1,n,1
#define pushup(x) seg[(x)]=seg[(x)<<1]+seg[(x)<<1|1]
typedef long long ll;
TMP inline ccf qr(ccf k){
char c=getchar();
ccf x=0;
int q=1;
while(c<48||c>57)
q=c==45?-1:q,c=getchar();
while(c>=48&&c<=57)
x=x*10+c-48,c=getchar();
if(q==-1)
x=-x;
return x;
}
const int _=6005;
inline int read(){
return qr(1);
}
int n,ans[_];
void Print(){
for(int i=1;i<=n;++i)
printf("%d ",ans[i]);
puts("");
}
bool check(int x){
int q=sqrt(x);
for(int i=2;i<=q;++i)
if(!(x%i))return 0;
return 1;
}
int main(){
n=read();
int m=(n+1)*n/2;
for(int i=1;i<=n;++i)ans[i]=1;
if(check(m)){Print();return 0;}
if(m&1&&!check(m-2))ans[3]=3,m-=3;
for(int i=2;i<=n;++i)
if(check(i)&&check(m-i))
{ans[i]=2;break;}
Print();
return 0;
}
博客保留所有权利,谢绝学步园、码迷等不在文首明显处显著标明转载来源的任何个人或组织进行转载!其他文明转载授权且欢迎!