题解 P3389 【【模板】高斯消元法】
题解 P3389 【【模板】高斯消元法】
看到大家都没有重载运算符,那我就重载一下运算符给大家娱乐一下
我使用的是高斯-约旦消元法,这种方法是精度最高的(相对地)
一句话解释高斯约旦消元法:
通过加减消元法,依次制定x0,并通过加减消元法消去其他方程的x0的系数。对于这样的系数矩阵我们只进行初等变幻保证了其正确性
看代码吧,主要是希望帮助大家可以学到一些重载的方法
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
inline int qr(void){
char c=getchar();
int x=0,q=1;
while(c<48||c>57)
q=c==45?-1:q,c=getchar();
while(c>=48&&c<=57)
x=(x<<1)+(x<<3)+(c^48),c=getchar();
return q*x;
}
#define RP(t,a,b) for(int t=(a),edd=(b);t<=edd;t++)
typedef double db;
const double EPS=1e-20;//这是坑点,一点要小一点,这个EPS。
int n;
const int maxn=105;
int ans[maxn];
inline db fabs(double x){
return x>=0?x:-x;
}
struct node{
db dat[maxn];
double& operator [](const int &x){
return dat[x];//重载运算符,返回引用 , 就算有dat有更多维,这样就好了,原理有关c++的“地址”系统
}
node operator *(const db &x){
node ans=(*this);//this是个指针,指向运算符左边的地址
for(int t=1;t<=n+1;t++)
ans[t]*=x;
return ans;
}
node operator /(const db &x){
node ans=(*this);
for(int t=1;t<=n+1;t++)
ans[t]/=x;
return ans;
}
node operator -(node &x){
node ans=(*this);
for(int t=1;t<=n+1;t++)
ans[t]-=x[t];
return ans;
}
node operator *=(const db &x){
return (*this)=(*this)*x;
}
node operator /=(const db &x){
return (*this)=(*this)/x;
}
node operator -=( node &x){
return (*this)=(*this)-x;
}
}data[maxn];
bool vis[maxn];
inline int big(int x){
db ans=0;
int ret;
for(int t=1;t<=n;t++)
if(!vis[t]&&ans<fabs(data[t][x]))
ret=t;
vis[ret]=1;//根据数学原理,不可重复选择一个方程来消元
return ret;//为了避免乘一个过小的数字,选择一个对于该未知数绝对值最大的系数
}
inline void kkk(void){
RP(t0,1,n){
int sttd=big(t0);
const db a=data[sttd][t0];
RP(t,1,n)
if(t!=sttd){
if(fabs(data[t][t0])<EPS){
cout<<"No Solution";//防止除0
return;
}
data[t]*=(a/data[t][t0]),data[t]-=data[sttd];//将选定x0的系数和基准方程变为一致,在通过加减消元消掉,
//此后该未知数的系数就是0,不会再产生影响
}
ans[t0]=sttd;//记录结果是哪个方程得出的
}
RP(t,1,n)
if(fabs(data[ans[t]][t])<EPS){
cout<<"No Solution"<<endl;
return;
}
RP(t,1,n){
printf("%.2lf\n",(data[ans[t]][n+1]/data[ans[t]][t]));
}
return;
}
int main(){
n=qr();
RP(t,1,n)
RP(i,1,n+1)
data[t][i]=qr();
kkk();
return 0;//功德圆满
}
博客保留所有权利,谢绝学步园、码迷等不在文首明显处显著标明转载来源的任何个人或组织进行转载!其他文明转载授权且欢迎!