题解 P1387 【最大正方形】
传送门
搞不清楚为什么这一题要DP . . . . . .
思路:
- \(n\le100\),考虑暴力。
- 要求一大块区间内都是1,考虑前缀和。
- 在矩阵中求一个符合条件的子矩阵,考虑\(n^3\)的“压行”做法。
具体实现:
- 读入时,先记录每一层的前缀和,再把上一次的前缀和加进来。
- \(n^2\)枚举正方形的上界和下界,顶着上界下界\(O(n)\)扫描记录答案。
- 若当前的上界下界的距离\(\le ans\)跳过
直接上代码。用了宏定义和快读,但很好理解,初学者都能一眼就懂..
#include<iostream>
#include<cstring>
#include<queue>
#include<cstdlib>
#include<vector>
#include<set>
#include<map>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<bitset>
#include<ctime>
using namespace std;
#define TMP template < class ins >
#define endl '\n'
#define RP(t,a,b) for(register int t=(a),edd=(b);t<=edd;t++)
#define ERP(t,a) for(register int t=head[(a)];t;t=e[t].nx)
#define DRP(t,a,b) for(register int t=(a),edd=(b);t>=edd;t--)
typedef long long ll;
TMP inline ins qr(ins tag){
char c=getchar();
ins x=0;
int q=0;
while(c<48||c>57)
q=c==45?-1:q,c=getchar();
while(c>=48&&c<=57)
x=x*10+c-48,c=getchar();
return q==-1?-x:x;
}
const int maxn=105;
int data[maxn][maxn];
int sum[maxn][maxn];
int n,m;
int ans;
inline void init(){
n=qr(1);
m=qr(1);
RP(t,1,n){
RP(i,1,m)
sum[t][i]=(data[t][i]=qr(1))+sum[t][i-1];
//记录当前行前缀和
RP(i,1,m)
sum[t][i]+=sum[t-1][i];
//把上一行前缀和加进来
}
return;
}
inline bool jde(int x1,int y1,int x2,int y2){
int cmp=(abs(x1-x2)+1)*(abs(y1-y2)+1);
//计算面积
int sttd=sum[x2][y2]-sum[x2][y1-1]-sum[x1-1][y2]+sum[x1-1][y1-1];
//(x1-1,y1-1)到(1,1)的矩阵被减了两次,要补偿回来
return cmp==sttd;
}
inline void eff(){
RP(t1,1,n){//枚举上界
RP(t2,t1,n){//枚举下界
int k=t2-t1+1;
//计算当前上下界对应的正方形大小
if(k<=ans)
continue;
//最优性剪枝
RP(t,k,m)//扫描一遍,
if(jde(t1,t-k+1,t2,t)){
ans=k;break;
//可以直接记录答案,因为前面已经最优性剪枝了
}
}
}
cout<<ans<<endl;
}
int main(){
#define debugged
#ifdef debug
freopen("in.in","r",stdin);
freopen("out.out","w",stdout);
#endif
init();
eff();
return 0;
}
博客保留所有权利,谢绝学步园、码迷等不在文首明显处显著标明转载来源的任何个人或组织进行转载!其他文明转载授权且欢迎!