在实际场景中,使用Netty4来实现RPC框架服务端一般会验证协议,最简单的方法的协议探测,判断魔数是否正确。如果服务端无法识别协议会立即抛出异常,并主动关闭连接,此时客户端会收到read信号,在发现是一个关闭连接请求后会关闭本地连接
这其中用户可以感知到的是InboundHandle收到channelInactive方法,可以自定义一些日志或作一下通知操作。

今天想搞清楚的是:
假设consumer端的InboundHandle收到channelInactive事件,是否可以立即结束这次请求并返回请求失败,而不必等到timeout才结束?
单纯的这个协议探测失败场景中,是可以立即结束的,因为服务端不会响应任何数据。
其他场景呢,在第1个InboundHandle的inactive方法中可以直接响应操作失败吗?

服务端主动关闭连接时,Netty的处理流程

graph TD A[AbstractNioByteChannel.read] -->C(read) C -->| lastBytesRead < 0 | D[关闭连接] D --> E[fireChannelReadComplete] E --> F[closeOnRead - AbstractChannel.close] F --> G[doClose0 - active=false - AbstractEpollChannel.doDeregister ] --> H[AbstractChannel.fireChannelInactiveAndDeregister] H --> I[AbstractChannel.deregister - doDeregister ] I -->| wasActive and !active | J[fireChannelInactive]

在netty4中channel都被绑定到特定I/O EventLoop线程中,I/O线程收到信号为SelectionKey.OP_READ的就绪信号,如果allocHandle.lastBytesRead() = -1,则表示这是连接关闭的请求。
单独看read的处理逻辑在AbstractNioByteChannel.read()中

        public final void read() {
            final ChannelConfig config = config();
            if (shouldBreakReadReady(config)) {
                clearReadPending();
                return;
            }
            final ChannelPipeline pipeline = pipeline();
            final ByteBufAllocator allocator = config.getAllocator();
            final RecvByteBufAllocator.Handle allocHandle = recvBufAllocHandle();
            allocHandle.reset(config);

            ByteBuf byteBuf = null;
            boolean close = false;
            try {
                do {
                    byteBuf = allocHandle.allocate(allocator);
                    allocHandle.lastBytesRead(doReadBytes(byteBuf));
                    if (allocHandle.lastBytesRead() <= 0) {
                        // nothing was read. release the buffer.
                        byteBuf.release();
                        byteBuf = null;
                        close = allocHandle.lastBytesRead() < 0;  // -1表示关闭连接
                        if (close) {
                            // There is nothing left to read as we received an EOF.
                            readPending = false;
                        }
                        break;
                    }

                    allocHandle.incMessagesRead(1);
                    readPending = false;
                    pipeline.fireChannelRead(byteBuf);
                    byteBuf = null;
                } while (allocHandle.continueReading());

                allocHandle.readComplete();
                pipeline.fireChannelReadComplete();

                if (close) {
                    closeOnRead(pipeline);  //执行关连接逻辑
                }
            } catch (Throwable t) {
                handleReadException(pipeline, byteBuf, t, close, allocHandle);
            } finally {
                // Check if there is a readPending which was not processed yet.
                // This could be for two reasons:
                // * The user called Channel.read() or ChannelHandlerContext.read() in channelRead(...) method
                // * The user called Channel.read() or ChannelHandlerContext.read() in channelReadComplete(...) method
                //
                // See https://github.com/netty/netty/issues/2254
                if (!readPending && !config.isAutoRead()) {
                    removeReadOp();
                }
            }
        }
    }

close = allocHandle.lastBytesRead() < 0;
根据最后可读的bytes为-1,即为关闭

接下来是关闭连接的流程
检查此连接之前是否为active状态,并且当前是否为active,进入fireChannelInactiveAndDeregister流程,注销channel
这里不会立即注销channel,而是以一个任务的形式放到eventloop中稍后执行,文档中解释了不立即执行的原因:

        private void invokeLater(Runnable task) {
            try {
                // This method is used by outbound operation implementations to trigger an inbound event later.
                // They do not trigger an inbound event immediately because an outbound operation might have been
                // triggered by another inbound event handler method.  If fired immediately, the call stack
                // will look like this for example:
                //
                //   handlerA.inboundBufferUpdated() - (1) an inbound handler method closes a connection.
                //   -> handlerA.ctx.close()
                //      -> channel.unsafe.close()
                //         -> handlerA.channelInactive() - (2) another inbound handler method called while in (1) yet
                //
                // which means the execution of two inbound handler methods of the same handler overlap undesirably.
                eventLoop().execute(task);
            } catch (RejectedExecutionException e) {
                logger.warn("Can't invoke task later as EventLoop rejected it", e);
            }
        }

大致的意思是 这个方法被用于出港操作来延迟触发一个到达的事件, 主要针对的场景是InboundHandler中产生了出港操作,比如主动断开连接,可能出现多个InboundHandler都会触发出港操作,这些操作可能是相同的如果立即执行,可能会重叠执行。
如果客户端从未收到任何数据,直接被服务端主动关闭是没有这个顾虑的,因为还没有InboundHandler处理数据。

            invokeLater(new Runnable() {
                @Override
                public void run() {
                    try {
                        doDeregister();
                    } catch (Throwable t) {
                        logger.warn("Unexpected exception occurred while deregistering a channel.", t);
                    } finally {
                        if (fireChannelInactive) {
                            pipeline.fireChannelInactive();
                        }
                        // Some transports like local and AIO does not allow the deregistration of
                        // an open channel.  Their doDeregister() calls close(). Consequently,
                        // close() calls deregister() again - no need to fire channelUnregistered, so check
                        // if it was registered.
                        if (registered) {
                            registered = false;
                            pipeline.fireChannelUnregistered();
                        }
                        safeSetSuccess(promise);
                    }
                }
            });

在从eventloop移除当前channel后(doDeregister()方法),进入finally代码块,如果之前连接是可用的,则fireChannelInactive为true
接下来进入pipeline.fireChannelInactive();流程

DefaultChannelPipreline 中有一个 AbstractChannelHandlerContext 链表,他按用户配置的顺序被写入Pipiline中,表头是Netty自定义的HeadContext,先执行头部的AbstractChannelHandlerContext

    @Override
    public final ChannelPipeline fireChannelInactive() {
        AbstractChannelHandlerContext.invokeChannelInactive(head);
        return this;
    }

AbstractChannelHandlerContext持有 ChannelHandler对象,此处实际为 ChannelInboundHandler

    private void invokeChannelInactive() {
        if (invokeHandler()) {
            try {
                ((ChannelInboundHandler) handler()).channelInactive(this);
            } catch (Throwable t) {
                notifyHandlerException(t);
            }
        } else {
            fireChannelInactive();
        }
    }

这里会先进入netty预置的DefaultChannelPipeline$HeadContext实现中,然后走到了我们配置的第一个InboundHandle中来
默认的channelInactive实现在ByteToMessageDecoder中

    public void channelInactive(ChannelHandlerContext ctx) throws Exception {
        channelInputClosed(ctx, true);
    }

Netty对关闭连接容忍度非常高,关闭连接前如果连接仍然有可读的数据,会尝试把他读出来

    private void channelInputClosed(ChannelHandlerContext ctx, boolean callChannelInactive) throws Exception {
        CodecOutputList out = CodecOutputList.newInstance();
        try {
            channelInputClosed(ctx, out);
        } catch (DecoderException e) {
            throw e;
        } catch (Exception e) {
            throw new DecoderException(e);
        } finally {
            try {
                if (cumulation != null) {
                    cumulation.release();
                    cumulation = null;
                }
                int size = out.size();
                fireChannelRead(ctx, out, size);
                if (size > 0) {
                    // Something was read, call fireChannelReadComplete()
                    ctx.fireChannelReadComplete();
                }
                if (callChannelInactive) {
                    ctx.fireChannelInactive();
                }
            } finally {
                // Recycle in all cases
                out.recycle();
            }
        }
    }
	
    /**
     * Called when the input of the channel was closed which may be because it changed to inactive or because of
     * {@link ChannelInputShutdownEvent}.
     */
    void channelInputClosed(ChannelHandlerContext ctx, List<Object> out) throws Exception {
        if (cumulation != null) {
            callDecode(ctx, cumulation, out);
            decodeLast(ctx, cumulation, out);
        } else {
            decodeLast(ctx, Unpooled.EMPTY_BUFFER, out);
        }
    }	
    /**
     * Get {@code numElements} out of the {@link CodecOutputList} and forward these through the pipeline.
     */
    static void fireChannelRead(ChannelHandlerContext ctx, CodecOutputList msgs, int numElements) {
        for (int i = 0; i < numElements; i ++) {
            ctx.fireChannelRead(msgs.getUnsafe(i));
        }
    }	

callDecode会尝试去decode已经在channel还为取完的数据,如果取到了,则外部方法中的size就会大于0,会走完fireChannelRead的流程

    /**
     * A {@link Channel} received a message.
     *
     * This will result in having the {@link ChannelInboundHandler#channelRead(ChannelHandlerContext, Object)}
     * method  called of the next {@link ChannelInboundHandler} contained in the  {@link ChannelPipeline} of the
     * {@link Channel}.
     */
    ChannelInboundInvoker fireChannelRead(Object msg);

fireChannelRead方法会调用ChannelPipeline中的下一个ChannelInboundHandler执行channelRead,我们常用的MessageToMessageDecoder执行channelRead时,会调用decode方法,也就是我们实现来处理请求的方法。
然后设置channelReadComplete()
最后调用ctx.fireChannelInactive();将事件传给下一个handler。

Netty4中I/O EventLoop是单线程执行的,对一个channel来说是线程安全的,而channel上的数据必然是先于close信号到达的,那么,当我们收到close新号时,之前已经发送过来的数据,一定已经至少被尝试处理过了吗?如果是这样,还有必要执行一下callDecode逻辑来fireChannelRead吗?

回到最初的代码块中
AbstractNioByteChannel.read()中

        public final void read() {
            final ChannelConfig config = config();
            if (shouldBreakReadReady(config)) {
                clearReadPending();
                return;
            }
            final ChannelPipeline pipeline = pipeline();
            final ByteBufAllocator allocator = config.getAllocator();
            final RecvByteBufAllocator.Handle allocHandle = recvBufAllocHandle();
            allocHandle.reset(config);

            ByteBuf byteBuf = null;
            boolean close = false;
            try {
                do {
                    byteBuf = allocHandle.allocate(allocator);
                    allocHandle.lastBytesRead(doReadBytes(byteBuf));
                    if (allocHandle.lastBytesRead() <= 0) {
                        // nothing was read. release the buffer.
                        byteBuf.release();
                        byteBuf = null;
                        close = allocHandle.lastBytesRead() < 0;
                        if (close) {
                            // There is nothing left to read as we received an EOF.
                            readPending = false;
                        }
                        break;
                    }

                    allocHandle.incMessagesRead(1);
                    readPending = false;
                    pipeline.fireChannelRead(byteBuf); //如果是正常的read,立即 fireChannelRead
                    byteBuf = null;
                } while (allocHandle.continueReading());

                allocHandle.readComplete();
                pipeline.fireChannelReadComplete();

                if (close) {
                    closeOnRead(pipeline);
                }
            } catch (Throwable t) {
                handleReadException(pipeline, byteBuf, t, close, allocHandle);
            } finally {
                // Check if there is a readPending which was not processed yet.
                // This could be for two reasons:
                // * The user called Channel.read() or ChannelHandlerContext.read() in channelRead(...) method
                // * The user called Channel.read() or ChannelHandlerContext.read() in channelReadComplete(...) method
                //
                // See https://github.com/netty/netty/issues/2254
                if (!readPending && !config.isAutoRead()) {
                    removeReadOp();
                }
            }
        }
    }

可以发现,如果是普通的读操作,会立即触发fireChannelRead,经过前面的分析,可以知道该方法将会invokeChannelRead,并且当前的executor是在eventLoop中的,那么channelRead会被立即执行,最终触发我们配置的InboundHandle
而close新号必然晚于正常的数据流,因此数据一定是先被InboundHandle处理后才接受到close信号的。

结论:
单从服务端主动断开连接的场景,如果收到close新号,则在第一个inboundHandle的 channelInactive 方法中,直接通知业务任务已失败是安全的,因为数据流如果返回完全,则必然被处理过。
如果客户端inbountHandle过程中主动close掉channel,也是安全的,因为他会稍后执行,并且尝试将最新的Inbound数据再次decode,如果有可处理的数据就走完所有InboundHandle(channel已经关闭,写响应会失败),没有则结束

posted on 2020-06-19 16:42  j.liu&nbsp;windliu  阅读(6005)  评论(0编辑  收藏  举报