错误分析
堆栈信息中有一个错误信息:Job aborted due to stage failure: Task 1 in stage 2.0 failed 4 times, most recent failure: Lost task 1.3 in stage 2.0 (TID 264, idc-xx-xx-3-30.d.xx.com, executor 2): java.lang.OutOfMemoryError: Java heap space
根据提示信息可以得到以下几点
- stage由一堆task组成,也就是taskset,编号1的task在stage2中失败了4次
- executor 是实际执行task的节点,编号2的executor发生了Java heap space
- executor 内存配置的是512M,没有配置 spark.executor.memoryOverhead,spark在计算executor最终需要分配多少内存时有以下机制
- 未配置spark.executor.memoryOverhead来直接控制off-heap时(堆外内存,将对象序列化后放在一大块gc不会直接管理的内存中,需要的时候再反序列化使用,就像放到磁盘上一样,此处堆外内存包含了方法区,直接内存,虚拟机栈,本地方法栈)
realMem = executorMemory[heap] + (executorMemory * 0.10, with minimum of 384)[off-heap]
2)配置spark.executor.memoryOverhead
realMem = executorMemory[heap] + memoryOverhead[off-heap]
readMem表示java进程需要申请的总内存,如果超过container的内存容量,会被直接kill掉
异常种类
- OutOfMemoryError: Java heap space,堆内存不足,溢出,需调整--executor-memory
- OutOfMemoryError: Java permgen space,堆外内存不足,溢出,需调整spark.executor.memoryOverhead
下述异常属于Java heap space,调整--executor-memory
RDD的位置,根据MemoryMode可以选择是堆内或堆外
日志中查看到的异常信息
: org.apache.spark.SparkException: Job aborted.
at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1.apply$mcV$sp(FileFormatWriter.scala:147)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1.apply(FileFormatWriter.scala:121)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1.apply(FileFormatWriter.scala:121)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:57)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:121)
at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelationCommand.run(InsertIntoHadoopFsRelationCommand.scala:101)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult$lzycompute(commands.scala:58)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult(commands.scala:56)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.doExecute(commands.scala:74)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:114)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:114)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:135)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:132)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:113)
at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:92)
at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:92)
at org.apache.spark.sql.Dataset.
at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:64)
at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:592)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:280)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:214)
at java.lang.Thread.run(Thread.java:745)
Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: Task 1 in stage 2.0 failed 4 times, most recent failure: Lost task 1.3 in stage 2.0 (TID 264, idc-xx-xx-3-30.d.xx.com, executor 2): java.lang.OutOfMemoryError: Java heap space
at org.apache.parquet.hadoop.ParquetFileReader$ConsecutiveChunkList.readAll(ParquetFileReader.java:778)
at org.apache.parquet.hadoop.ParquetFileReader.readNextRowGroup(ParquetFileReader.java:511)
at org.apache.spark.sql.execution.datasources.parquet.VectorizedParquetRecordReader.checkEndOfRowGroup(VectorizedParquetRecordReader.java:270)
at org.apache.spark.sql.execution.datasources.parquet.VectorizedParquetRecordReader.nextBatch(VectorizedParquetRecordReader.java:225)
at org.apache.spark.sql.execution.datasources.parquet.VectorizedParquetRecordReader.nextKeyValue(VectorizedParquetRecordReader.java:137)
at org.apache.spark.sql.execution.datasources.RecordReaderIterator.hasNext(RecordReaderIterator.scala:39)
at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.hasNext(FileScanRDD.scala:109)
at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.nextIterator(FileScanRDD.scala:184)
at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.hasNext(FileScanRDD.scala:109)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.scan_nextBatch$(Unknown Source)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:377)
at org.apache.spark.sql.execution.columnar.InMemoryRelation$$anonfun$1$$anon$1.hasNext(InMemoryRelation.scala:132)
at org.apache.spark.storage.memory.MemoryStore.putIteratorAsValues(MemoryStore.scala:215)
at org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:1005)
at org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:996)
at org.apache.spark.storage.BlockManager.doPut(BlockManager.scala:936)
at org.apache.spark.storage.BlockManager.doPutIterator(BlockManager.scala:996)
at org.apache.spark.storage.BlockManager.getOrElseUpdate(BlockManager.scala:700)
at org.apache.spark.rdd.RDD.getOrCompute(RDD.scala:334)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:285)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:99)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:322)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
导致异常的代码
/**
* @param f file to read the chunks from
* @return the chunks
* @throws IOException
*/
public List<Chunk> readAll(FSDataInputStream f) throws IOException {
List<Chunk> result = new ArrayList<Chunk>(chunks.size());
f.seek(offset);
byte[] chunksBytes = new byte[length]; //778行,分配长为length的byte[]时没有足够的可用内存导致heap space
f.readFully(chunksBytes);
// report in a counter the data we just scanned
BenchmarkCounter.incrementBytesRead(length);
int currentChunkOffset = 0;
for (int i = 0; i < chunks.size(); i++) {
ChunkDescriptor descriptor = chunks.get(i);
if (i < chunks.size() - 1) {
result.add(new Chunk(descriptor, chunksBytes, currentChunkOffset));
} else {
// because of a bug, the last chunk might be larger than descriptor.size
result.add(new WorkaroundChunk(descriptor, chunksBytes, currentChunkOffset, f));
}
currentChunkOffset += descriptor.size;
}
return result ;
}