Tensorflow2.0笔记24——数据增强,增大数据量

Tensorflow2.0笔记

本博客为Tensorflow2.0学习笔记,感谢北京大学微电子学院曹建老师

2.2 数据增强,增大数据量

1.数据增强(增大数据量)

image_gen_train=tf.keras.preprocessing.image.ImageDataGenerator( 增强方法)
image_gen_train.fit(x_train) 

常用增强方法:

缩放系数:rescale=所有数据将乘以提供的值

随机旋转:rotation_range=随机旋转角度数范围宽度偏移:width_shift_range=随机宽度偏移量

高度偏移:height_shift_range=随机高度偏移量水平翻转:horizontal_flip=是否水平随机翻转

随机缩放:zoom_range=随机缩放的范围 [1-n,1+n]

例:

image_gen_train = ImageDataGenerator( 
rescale=1./255, # 原 像 素 值 0~255 归 至 0~1 
rotation_range=45, #随机 45 度旋转 
width_shift_range=.15,  #随机宽度偏移 [-0.15,0.15) 
height_shift_range=.15,  #随机高度偏移 [-0.15,0.15) 
horizontal_flip=True, #随机水平翻转 
zoom_range=0.5 # 随 机 缩 放 到 [1-50%,1+50%]

代码 mnist_train_ex2.py:

import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator

mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)  # 给数据增加一个维度,从(60000, 28, 28)reshape为(60000, 28, 28, 1)

image_gen_train = ImageDataGenerator(
    rescale=1. / 1.,  # 如为图像,分母为255时,可归至0~1
    rotation_range=45,  # 随机45度旋转
    width_shift_range=.15,  # 宽度偏移
    height_shift_range=.15,  # 高度偏移
    horizontal_flip=False,  # 水平翻转
    zoom_range=0.5  # 将图像随机缩放阈量50%
)
image_gen_train.fit(x_train)

model = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dense(10, activation='softmax')
])

model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
              metrics=['sparse_categorical_accuracy'])

model.fit(image_gen_train.flow(x_train, y_train, batch_size=32), epochs=5, validation_data=(x_test, y_test),
          validation_freq=1)
model.summary()

​ 注:1、model.fit(x_train,y_train,batch_size=32,……)变为 model.fit(image_gen_train.flow(x_train,y_train,batch_size=32), ……); 2、数据增强函数的输入要求是 4 维,通过 reshape 调整;3、如果报错:缺少scipy 库,pip install scipy 即可。

2.数据增强可视化

# 显示原始图像和增强后的图像
import tensorflow as tf
from matplotlib import pyplot as plt
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import numpy as np

mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)

image_gen_train = ImageDataGenerator(
    rescale=1. / 255,
    rotation_range=45,
    width_shift_range=.15,
    height_shift_range=.15,
    horizontal_flip=False,
    zoom_range=0.5
)
image_gen_train.fit(x_train)
print("xtrain",x_train.shape)
x_train_subset1 = np.squeeze(x_train[:12])
print("xtrain_subset1",x_train_subset1.shape)
print("xtrain",x_train.shape)
x_train_subset2 = x_train[:12]  # 一次显示12张图片
print("xtrain_subset2",x_train_subset2.shape)

fig = plt.figure(figsize=(20, 2))
plt.set_cmap('gray')
# 显示原始图片
for i in range(0, len(x_train_subset1)):
    ax = fig.add_subplot(1, 12, i + 1)
    ax.imshow(x_train_subset1[i])
fig.suptitle('Subset of Original Training Images', fontsize=20)
plt.show()

# 显示增强后的图片
fig = plt.figure(figsize=(20, 2))
for x_batch in image_gen_train.flow(x_train_subset2, batch_size=12, shuffle=False):
    for i in range(0, 12):
        ax = fig.add_subplot(1, 12, i + 1)
        ax.imshow(np.squeeze(x_batch[i]))
    fig.suptitle('Augmented Images', fontsize=20)
    plt.show()
    break;

image-20210623202709193

image-20210623202730330

posted @ 2021-02-06 21:05  Mr_WildFire  阅读(643)  评论(0编辑  收藏  举报