poj 1068--Parencodings

Description

Let S = s1 s2...s2n be a well-formed string of parentheses. S can be encoded in two different ways:
q By an integer sequence P = p1 p2...pn where pi is the number of left parentheses before the ith right parenthesis in S (P-sequence).
q By an integer sequence W = w1 w2...wn where for each right parenthesis, say a in S, we associate an integer which is the number of right parentheses counting from the matched left parenthesis of a up to a. (W-sequence).

Following is an example of the above encodings:

S (((()()())))
P-sequence 4 5 6666
W-sequence 1 1 1456

Write a program to convert P-sequence of a well-formed string to the W-sequence of the same string.

Input

The first line of the input contains a single integer t (1 <= t <= 10), the number of test cases, followed by the input data for each test case. The first line of each test case is an integer n (1 <= n <= 20), and the second line is the P-sequence of a well-formed string. It contains n positive integers, separated with blanks, representing the P-sequence.

Output

The output file consists of exactly t lines corresponding to test cases. For each test case, the output line should contain n integers describing the W-sequence of the string corresponding to its given P-sequence.

Sample Input

2
6
4 5 6 6 6 6
9 
4 6 6 6 6 8 9 9 9

Sample Output

1 1 1 4 5 6
1 1 2 4 5 1 1 3 9

p-代表的是这个右括号前面有几个左括号
w-代表的是和这个右括号匹配的左括号在第几位
现在已知p矩阵,要求w的值。。
做完看到网上好多推出什么公式的。。我是直接用数组模拟的,先将所有的括号形式都存到数组中,然后在从后往前找与之匹配的,算出w的值,不算很好的方法,但是感觉应该好理解些。。
View Code
 1 #include <stdio.h>
 2 #include <string.h>
 3 int main()
 4 {
 5     int t,n;
 6     int i,j,k;
 7     int p[22],w[22],s[100];
 8     scanf("%d",&t);
 9     while(t--)
10     {
11         scanf("%d",&n);
12         for(i=0; i<n; i++)
13             scanf("%d",&p[i]);
14         for(i=0; i<p[0]; i++)
15             s[i]=-1;
16         s[i++]=1;
17         for(j=1; j<n; j++)
18         {
19             for(k=0; k<p[j]-p[j-1]; k++)
20                 s[i++]=-1;
21             s[i++]=1;
22         }
23         //for(j=0;j<i;j++)
24         //printf("%d",s[j]);
25         i=n-1;
26         for(j=2*n-1; j>=0; j--)
27         {
28             if(s[j]==1)
29             {
30                 int sum=0;
31                 for(k=j;; k--)
32                 {
33                     sum+=s[k];
34                     if(sum==0)
35                         break;
36                 }
37                 w[i--]=(j-k+1)/2;
38             }
39         }
40         printf("%d",w[0]);
41         for(j=1; j<n; j++)
42             printf(" %d",w[j]);
43         printf("\n");
44     }
45     return 0;
46 }

 



posted @ 2013-03-11 11:51  Tamara.c  阅读(142)  评论(0编辑  收藏  举报