Edit Distance
Edit Distance
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)
You have the following 3 operations permitted on a word:
a) Insert a character
b) Delete a character
c) Replace a character
分析:
处理这道题也是用动态规划。
动态数组dp[word1.length+1][word2.length+1]
dp[i][j]表示从word1前i个字符转换到word2前j个字符最少的步骤数。
假设word1现在遍历到字符x,word2遍历到字符y(word1当前遍历到的长度为i,word2为j)。
以下两种可能性:
1. x==y,那么不用做任何编辑操作,所以dp[i][j] = dp[i-1][j-1]
2. x != y
(1) 在word1插入y, 那么dp[i][j] = dp[i][j-1] + 1
(2) 在word1删除x, 那么dp[i][j] = dp[i-1][j] + 1
(3) 把word1中的x用y来替换,那么dp[i][j] = dp[i-1][j-1] + 1
最少的步骤就是取这三个中的最小值。
最后返回 dp[word1.length+1][word2.length+1] 即可。
class Solution { public: int minDistance(string word1, string word2) { int m = word1.size(); int n = word2.size(); vector<vector<int>> dp(m+1); for(size_t i = 0; i<m+1; i++) for(size_t j = 0; j<n+1; j++) dp[i].push_back(-1); for(size_t i=0; i<m+1;i++) dp[i][0] =i; for(size_t j=0; j<n+1; j++) dp[0][j] =j; for(int i=1; i<m+1; i++) for(int j =1; j<n+1; j++) { if(word1[i-1] == word2[j-1]){ dp[i][j] = dp[i-1][j-1]; } else{ int insert = dp[i-1][j]+1; int replace = dp[i-1][j-1]+1; int del = dp[i][j-1]+1; dp[i][j] = min(del,min(insert, replace)); } } return dp[m][n]; } };