Linux系统管理常用命令用法总结(2)
1.free指令会显示内存的使用情况,包括实体内存,虚拟的交换文件内存,共享内存区段,以及系统核心使用的缓冲区等。
语法:free [-bkmotV][-s <间隔秒数>]
参数说明:
- -b 以Byte为单位显示内存使用情况。
- -k 以KB为单位显示内存使用情况。
- -m 以MB为单位显示内存使用情况。
- -o 不显示缓冲区调节列。
- -s<间隔秒数> 持续观察内存使用状况。
- -t 显示内存总和列。
- -V 显示版本信息。
-
解释一下Linux上free命令的输出。 下面是free的运行结果,一共有4行。为了方便说明,我加上了列号。这样可以把free的输出看成一个二维数组FO(Free Output)。例如: FO[2][1] = 24677460 FO[3][2] = 10321516 1 2 3 4 5 6 1 total used free shared buffers cached 2 Mem: 24677460 23276064 1401396 0 870540 12084008 3 -/+ buffers/cache: 10321516 14355944 4 Swap: 25151484 224188 24927296 free的输出一共有四行,第四行为交换区的信息,分别是交换的总量(total),使用量(used)和有多少空闲的交换区(free),这个比较清楚,不说太多。 free输出地第二行和第三行是比较让人迷惑的。这两行都是说明内存使用情况的。第一列是总量(total),第二列是使用量(used),第三列是可用量(free)。 第一行的输出时从操作系统(OS)来看的。也就是说,从OS的角度来看,计算机上一共有: 24677460KB(缺省时free的单位为KB)物理内存,即FO[2][1]; 在这些物理内存中有23276064KB(即FO[2][2])被使用了; 还用1401396KB(即FO[2][3])是可用的; 这里得到第一个等式: FO[2][1] = FO[2][2] + FO[2][3] FO[2][4]表示被几个进程共享的内存的,现在已经deprecated,其值总是0(当然在一些系统上也可能不是0,主要取决于free命令是怎么实现的)。 FO[2][5]表示被OS buffer住的内存。FO[2][6]表示被OS cache的内存。在有些时候buffer和cache这两个词经常混用。不过在一些比较低层的软件里是要区分这两个词的,看老外的洋文: A buffer is something that has yet to be "written" to disk. A cache is something that has been "read" from the disk and stored for later use. 也就是说buffer是用于存放要输出到disk(块设备)的数据的,而cache是存放从disk上读出的数据。这二者是为了提高IO性能的,并由OS管理。 Linux和其他成熟的操作系统(例如windows),为了提高IO read的性能,总是要多cache一些数据,这也就是为什么FO[2][6](cached memory)比较大,而FO[2][3]比较小的原因。我们可以做一个简单的测试: 释放掉被系统cache占用的数据; echo 3>/proc/sys/vm/drop_caches 读一个大文件,并记录时间; 关闭该文件; 重读这个大文件,并记录时间; 第二次读应该比第一次快很多。原来我做过一个BerkeleyDB的读操作,大概要读5G的文件,几千万条记录。在我的环境上,第二次读比第一次大概可以快9倍左右。 free输出的第二行是从一个应用程序的角度看系统内存的使用情况。 对于FO[3][2],即-buffers/cache,表示一个应用程序认为系统被用掉多少内存; 对于FO[3][3],即+buffers/cache,表示一个应用程序认为系统还有多少内存; 因为被系统cache和buffer占用的内存可以被快速回收,所以通常FO[3][3]比FO[2][3]会大很多。 这里还用两个等式: FO[3][2] = FO[2][2] - FO[2][5] - FO[2][6] FO[3][3] = FO[2][3] + FO[2][5] + FO[2][6] 这二者都不难理解。
-
输出:
[root@SF1150 service]# free
total used free shared buffers cached
Mem: 32940112 30841684 2098428 0 4545340 11363424
-/+ buffers/cache: 14932920 18007192
Swap: 32764556 1944984 30819572
[root@SF1150 service]# free -g
total used free shared buffers cached
Mem: 31 29 2 0 4 10
-/+ buffers/cache: 14 17
Swap: 31 1 29
[root@SF1150 service]# free -m
total used free shared buffers cached
Mem: 32168 30119 2048 0 4438 11097
-/+ buffers/cache: 14583 17584
Swap: 31996 1899 30097
说明:
下面是对这些数值的解释:
total:总计物理内存的大小。
used:已使用多大。
free:可用有多少。
Shared:多个进程共享的内存总额。
Buffers/cached:磁盘缓存的大小。
第三行(-/+ buffers/cached):
used:已使用多大。
free:可用有多少。
第四行是交换分区SWAP的,也就是我们通常所说的虚拟内存。
区别:第二行(mem)的used/free与第三行(-/+ buffers/cache) used/free的区别。 这两个的区别在于使用的角度来看,第一行是从OS的角度来看,因为对于OS,buffers/cached 都是属于被使用,所以他的可用内存是2098428KB,已用内存是30841684KB,其中包括,内核(OS)使用+Application(X, oracle,etc)使用的+buffers+cached.
第三行所指的是从应用程序角度来看,对于应用程序来说,buffers/cached 是等于可用的,因为buffer/cached是为了提高文件读取的性能,当应用程序需在用到内存的时候,buffer/cached会很快地被回收。
所以从应用程序的角度来说,可用内存=系统free memory+buffers+cached。
如本机情况的可用内存为:
18007156=2098428KB+4545340KB+11363424KB
接下来解释什么时候内存会被交换,以及按什么方交换。
当可用内存少于额定值的时候,就会开会进行交换.如何看额定值:
命令:
cat /proc/meminfo
输出:
[root@SF1150 service]# cat /proc/meminfo
MemTotal: 32940112 kB
MemFree: 2096700 kB
Buffers: 4545340 kB
Cached: 11364056 kB
SwapCached: 1896080 kB
Active: 22739776 kB
Inactive: 7427836 kB
HighTotal: 0 kB
HighFree: 0 kB
LowTotal: 32940112 kB
LowFree: 2096700 kB
SwapTotal: 32764556 kB
SwapFree: 30819572 kB
Dirty: 164 kB
Writeback: 0 kB
AnonPages: 14153592 kB
Mapped: 20748 kB
Slab: 590232 kB
PageTables: 34200 kB
NFS_Unstable: 0 kB
Bounce: 0 kB
CommitLimit: 49234612 kB
Committed_AS: 23247544 kB
VmallocTotal: 34359738367 kB
VmallocUsed: 278840 kB
VmallocChunk: 34359459371 kB
HugePages_Total: 0HugePages_Free: 0HugePages_Rsvd: 0Hugepagesize: 2048 kB
交换将通过三个途径来减少系统中使用的物理页面的个数:
1.减少缓冲与页面cache的大小,
2.将系统V类型的内存页面交换出去,
3.换出或者丢弃页面。(Application 占用的内存页,也就是物理内存不足)。
事实上,少量地使用swap是不是影响到系统性能的。
那buffers和cached都是缓存,两者有什么区别呢?
为了提高磁盘存取效率, Linux做了一些精心的设计, 除了对dentry进行缓存(用于VFS,加速文件路径名到inode的转换), 还采取了两种主要Cache方式:Buffer Cache和Page Cache。前者针对磁盘块的读写,后者针对文件inode的读写。这些Cache有效缩短了 I/O系统调用(比如read,write,getdents)的时间。
磁盘的操作有逻辑级(文件系统)和物理级(磁盘块),这两种Cache就是分别缓存逻辑和物理级数据的。
Page cache实际上是针对文件系统的,是文件的缓存,在文件层面上的数据会缓存到page cache。文件的逻辑层需要映射到实际的物理磁盘,这种映射关系由文件系统来完成。当page cache的数据需要刷新时,page cache中的数据交给buffer cache,因为Buffer Cache就是缓存磁盘块的。但是这种处理在2.6版本的内核之后就变的很简单了,没有真正意义上的cache操作。
Buffer cache是针对磁盘块的缓存,也就是在没有文件系统的情况下,直接对磁盘进行操作的数据会缓存到buffer cache中,例如,文件系统的元数据都会缓存到buffer cache中。
简单说来,page cache用来缓存文件数据,buffer cache用来缓存磁盘数据。在有文件系统的情况下,对文件操作,那么数据会缓存到page cache,如果直接采用dd等工具对磁盘进行读写,那么数据会缓存到buffer cache。
所以我们看linux,只要不用swap的交换空间,就不用担心自己的内存太少.如果常常swap用很多,可能你就要考虑加物理内存了.这也是linux看内存是否够用的标准.
如果是应用服务器的话,一般只看第二行,+buffers/cache,即对应用程序来说free的内存太少了,也是该考虑优化程序或加内存了。
实例2:以总和的形式显示内存的使用信息
命令:
free -t
输出:
[root@SF1150 service]# free -t
total used free shared buffers cached
Mem: 32940112 30845024 2095088 0 4545340 11364324
-/+ buffers/cache: 14935360 18004752Swap: 32764556 1944984 30819572Total: 65704668 32790008 32914660[root@SF1150 service]#
说明:
实例3:周期性的查询内存使用信息
命令:
free -s 10
输出:
[root@SF1150 service]# free -s 10
total used free shared buffers cached
Mem: 32940112 30844528 2095584 0 4545340 11364380
-/+ buffers/cache: 14934808 18005304Swap: 32764556 1944984 30819572
total used free shared buffers cached
Mem: 32940112 30843932 2096180 0 4545340 11364388
-/+ buffers/cache: 14934204 18005908Swap: 32764556 1944984 30819572
说明:
每10s 执行一次命令
文章出处:https://www.cnblogs.com/kex1n/p/6010496.html
posted on 2018-01-26 14:21 William126 阅读(173) 评论(0) 编辑 收藏 举报