HDU-1588 Gauss Fibonacci

题目大意:

有两个函数,g[i] = k * i + b,另外一个函数f[i] = f[i-1] + f[i-2],问你从0到n-1的f(g[i])的和。

解题思路:

斐波那契数列有种递推的思路是:

{f[i+1], f[i]; f[i], f[i-1]} = A ^ i

其中A = {1, 1; 1, 0}

这样的话,我们可以利用这样的特性,另f[i] = A^i,这样可以把这个问题利用矩阵的特性解出来。

也就是 sigma(0, n-1) f(g[i]) = A^b + A^(k + b) + A^(2k + b) + ... + A^((n-1)k + b)

这个地方就可以利用二分求等比数列的和,这个可以参考poj1845的一种解法。推荐博客

然后就是一种类比了。最后只需要输出2*2矩阵的非主对角线元素的任意一个就可以。

代码:

#include <map>
#include <set>
#include <queue>
#include <stack>
#include <cstdio>
#include <string>
#include <vector>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <functional>
using namespace std;

#define mp make_pair
#define pb push_back
#define lson (rt << 1)
#define rson (rt << 1 | 1)
#define fun(x) ((x) >= 0 ? (x) : -(x))

typedef long long LL;
typedef pair<int, int> pi;
typedef struct node{
    LL r0, r1, r2, r3;
    node(LL a = 0, LL b = 0, LL c = 0, LL d = 0) {
        r0 = a; r1 = b;
        r2 = c; r3 = d;
    }
}Matrix;

const Matrix one = Matrix(1, 0, 0, 1);
const Matrix fib = Matrix(1, 1, 1, 0);

LL mod;
Matrix ab;

Matrix fastMatrix(Matrix x, LL n) {
    LL t11, t12, t21, t22;
    Matrix m1 = x, m2 = one;

    while (n) {
        if (n & 1) {
            t11 = ((m2.r0 * m1.r0) % mod + (m2.r1 * m1.r2) % mod) % mod;
            t12 = ((m2.r0 * m1.r1) % mod + (m2.r1 * m1.r3) % mod) % mod;
            t21 = ((m2.r2 * m1.r0) % mod + (m2.r3 * m1.r2) % mod) % mod;
            t22 = ((m2.r2 * m1.r1) % mod + (m2.r3 * m1.r3) % mod) % mod;

            m2 = Matrix(t11, t12, t21, t22);
        }

        n >>= 1;
        t11 = ((m1.r0 * m1.r0) % mod + (m1.r1 * m1.r2) % mod) % mod;
        t12 = ((m1.r0 * m1.r1) % mod + (m1.r1 * m1.r3) % mod) % mod;
        t21 = ((m1.r2 * m1.r0) % mod + (m1.r3 * m1.r2) % mod) % mod;
        t22 = ((m1.r2 * m1.r1) % mod + (m1.r3 * m1.r3) % mod) % mod;

        m1 = Matrix(t11, t12, t21, t22);
    }
    return m2;
}
Matrix operator + (Matrix a, Matrix b){
    Matrix ans;
    ans.r0 = (a.r0 + b.r0) % mod;
    ans.r1 = (a.r1 + b.r1) % mod;
    ans.r2 = (a.r2 + b.r2) % mod;
    ans.r3 = (a.r3 + b.r3) % mod;
    return ans;
}
Matrix operator * (Matrix a, Matrix b){
    Matrix ans;
    ans.r0 = ((a.r0 * b.r0) % mod + (a.r1 * b.r2) % mod) % mod;
    ans.r1 = ((a.r0 * b.r1) % mod + (a.r1 * b.r3) % mod) % mod;
    ans.r2 = ((a.r2 * b.r0) % mod + (a.r3 * b.r2) % mod) % mod;
    ans.r3 = ((a.r2 * b.r1) % mod + (a.r3 * b.r3) % mod) % mod;
    return ans;
}
Matrix CalAns(Matrix x, LL n, LL k) {
    if(n == 0) return one;
    if(n == 1) {
        Matrix y = fastMatrix(x, k);
        ++y.r0; ++y.r3;
        return y;
    }

    Matrix res = one;
    if(n % 2 == 1){
        res = res + fastMatrix(x, (n / 2 + 1) * k);
        res = res * CalAns(x, n / 2, k);
    }else{
        res = res + fastMatrix(x, ((n - 1) / 2 + 1) * k);
        res = res * CalAns(x, (n - 1) / 2, k);
        res = res + fastMatrix(x, n * k);
    }
    return res;
}
int main(){
    ios::sync_with_stdio(false); cin.tie(0);
    LL k, b, n, m;
    while (cin >> k >> b >> n >> m) {
        mod = m;
        ab = fastMatrix(fib, b);
        Matrix ans = CalAns(fib, n - 1, k);
        ans = ans * ab;
        cout << ans.r1 << endl;
    }
    return 0;
}



posted @ 2016-10-17 17:24  _Wilbert  阅读(108)  评论(0编辑  收藏  举报